umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt155",{id:"formSmash:upper:j_idt153:j_idt155",widgetVar:"widget_formSmash_upper_j_idt153_j_idt155",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Non-divergence form parabolic equations associated with non-commuting vector fields: Boundary behavior of nonnegative solutionsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true}); PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt232",{id:"formSmash:j_idt232",widgetVar:"widget_formSmash_j_idt232",onLabel:"Hide others and affiliations",offLabel:"Show others and affiliations"});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2012 (English)In: Annali della Scuola Normale Superiore di Pisa (Classe Scienze), Serie V, ISSN 0391-173X, E-ISSN 2036-2145, Vol. 11, no 2, p. 437-474Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2012. Vol. 11, no 2, p. 437-474
##### National Category

Mathematical Analysis
##### Identifiers

URN: urn:nbn:se:umu:diva-47921ISI: 000309320600009OAI: oai:DiVA.org:umu-47921DiVA, id: diva2:445343
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt451",{id:"formSmash:j_idt451",widgetVar:"widget_formSmash_j_idt451",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt457",{id:"formSmash:j_idt457",widgetVar:"widget_formSmash_j_idt457",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt463",{id:"formSmash:j_idt463",widgetVar:"widget_formSmash_j_idt463",multiple:true}); Available from: 2011-10-07 Created: 2011-10-03 Last updated: 2018-06-08Bibliographically approved
##### In thesis

In a cylinder Omega(T) = Omega x (0, T) subset of R-+(n+1) we study the boundary behavior of nonnegative solutions of second order parabolic equations of the form

H u = Sigma(m)(i,j=1) a(ij)(x, t)XiX (j)u - partial derivative(t)u = 0, (x, t) is an element of R-+(n+1),

where X = {X-l, . . . , X-m} is a system of C-infinity vector fields inR(n) satisfying Hormander's rank condition (1.2), and Omega is a non-tangentially accessible domain with respect to the Carnot-Caratheodory distance d induced by X. Concerning the matrix-valued function A = {a(ij)}, we assume that it is real, symmetric and uniformly positive definite. Furthermore, we suppose that its entries a(ij) are Holder continuous with respect to the parabolic distance associated with d. Our main results are: I) a backward Harnack inequality for nonnegative solutions vanishing on the lateral boundary (Theorem 1.1); 2) the Holder continuity up to the boundary of the quotient of two nonnegative solutions which vanish continuously on a portion of the lateral boundary (Theorem 1.2); 3) the doubling property for the parabolic measure associated with the operator H (Theorem 1.3). These results generalize to the subelliptic setting of the present paper, those in Lipschitz cylinders by Fabes, Safonov and Yuan in [20, 39]. With one proviso: in those papers the authors assume that the coefficients a(ij) be only bounded and measurable, whereas we assume Holder continuity with respect to the intrinsic parabolic distance.

1. Topics on subelliptic parabolic equations structured on Hörmander vector fields$(function(){PrimeFaces.cw("OverlayPanel","overlay484740",{id:"formSmash:j_idt741:0:j_idt745",widgetVar:"overlay484740",target:"formSmash:j_idt741:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1180",{id:"formSmash:j_idt1180",widgetVar:"widget_formSmash_j_idt1180",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1234",{id:"formSmash:lower:j_idt1234",widgetVar:"widget_formSmash_lower_j_idt1234",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1235_j_idt1237",{id:"formSmash:lower:j_idt1235:j_idt1237",widgetVar:"widget_formSmash_lower_j_idt1235_j_idt1237",target:"formSmash:lower:j_idt1235:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});