umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Spatial prediction in the presence of left-censoring
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2014 (Engelska)Ingår i: Computational Statistics & Data Analysis, ISSN 0167-9473, E-ISSN 1872-7352, Vol. 74, s. 125-141Artikel i tidskrift (Övrigt vetenskapligt) Published
Abstract [en]

Environmental (spatial) monitoring of different variables often involves left-censored observations falling below the minimum detection limit (MDL) of the instruments used to quantify them. Several methods to predict the variables at new locations given left-censored observations of a stationary spatial process are compared. The methods use versions of kriging predictors, being the best linear unbiased predictors minimizing the mean squared prediction errors. A semi-naive method that determines imputed values at censored locations in an iterative algorithm together with variogram estimation is proposed. It is compared with a computationally intensive method relying on Gaussian assumptions, as well as with two distribution-free methods that impute the MDL or MDL divided by two at the locations with censored values. Their predictive performance is compared in a simulation study for both Gaussian and non-Gaussian processes and discussed in relation to the complexity of the methods from a user’s perspective. The method relying on Gaussian assumptions performs, as expected, best not only for Gaussian processes, but also for other processes with symmetric marginal distributions. Some of the (semi-)naive methods also work well for these cases. For processes with skewed marginal distributions (semi-)naive methods work better. The main differences in predictive performance arise for small true values. For large true values no difference between methods is apparent.

Ort, förlag, år, upplaga, sidor
Elsevier, 2014. Vol. 74, s. 125-141
Nyckelord [en]
kriging, left-censoring, minimum detection limit, prediction, spatial process
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
matematisk statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-53278DOI: 10.1016/j.csda.2014.01.004ISI: 000333781500010OAI: oai:DiVA.org:umu-53278DiVA, id: diva2:511108
Anmärkning

Originally published in dissertation in manuscript form.

Tillgänglig från: 2012-03-20 Skapad: 2012-03-19 Senast uppdaterad: 2018-06-08Bibliografiskt granskad
Ingår i avhandling
1. Spatial sampling and prediction
Öppna denna publikation i ny flik eller fönster >>Spatial sampling and prediction
2012 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis discusses two aspects of spatial statistics: sampling and prediction. In spatial statistics, we observe some phenomena in space. Space is typically of two or three dimensions, but can be of higher dimension. Questions in mind could be; What is the total amount of gold in a gold-mine? How much precipitation could we expect in a specific unobserved location? What is the total tree volume in a forest area? In spatial sampling the aim is to estimate global quantities, such as population totals, based on samples of locations (papers III and IV). In spatial prediction the aim is to estimate local quantities, such as the value at a single unobserved location, with a measure of uncertainty (papers I, II and V).

In papers III and IV, we propose sampling designs for selecting representative probability samples in presence of auxiliary variables. If the phenomena under study have clear trends in the auxiliary space, estimation of population quantities can be improved by using representative samples. Such samples also enable estimation of population quantities in subspaces and are especially needed for multi-purpose surveys, when several target variables are of interest.

In papers I and II, the objective is to construct valid prediction intervals for the value at a new location, given observed data. Prediction intervals typically rely on the kriging predictor having a Gaussian distribution. In paper I, we show that the distribution of the kriging predictor can be far from Gaussian, even asymptotically. This motivated us to propose a semiparametric method that does not require distributional assumptions. Prediction intervals are constructed from the plug-in ordinary kriging predictor. In paper V, we consider prediction in the presence of left-censoring, where observations falling below a minimum detection limit are not fully recorded. We review existing methods and propose a semi-naive method. The semi-naive method is compared to one model-based method and two naive methods, all based on variants of the kriging predictor.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2012. s. 42
Nyckelord
Auxiliary variables, Censoring, Inclusion probabilities, Kriging, Local pivotal method, Minimum detection limit, Prediction intervals, Representative sample, Spatial process, Spatial sampling, Semiparametric bootstrap
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
matematisk statistik
Identifikatorer
urn:nbn:se:umu:diva-53286 (URN)978-91-7459-373-0 (ISBN)
Disputation
2012-04-12, MIT-huset, MA 121, Umeå universitet, Umeå, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2012-03-22 Skapad: 2012-03-20 Senast uppdaterad: 2018-06-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Schelin, LinaSjöstedt-de Luna, Sara

Sök vidare i DiVA

Av författaren/redaktören
Schelin, LinaSjöstedt-de Luna, Sara
Av organisationen
Institutionen för matematik och matematisk statistik
I samma tidskrift
Computational Statistics & Data Analysis
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 355 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf