umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits
Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 6120 Executive Boulevard, Rockville, Maryland 20852, USA.
Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 6120 Executive Boulevard, Rockville, Maryland 20852, USA.
Core Genotyping Facility, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 8717 Grovemont Circle, Gaithersburg, Maryland 20877, USA.
Information Management Services, Rockville, MD 20852, USA.
Visa övriga samt affilieringar
2012 (Engelska)Ingår i: American Journal of Human Genetics, ISSN 0002-9297, E-ISSN 1537-6605, Vol. 90, nr 5, s. 821-835Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Pooling genome-wide association studies (GWASs) increases power but also poses methodological challenges because studies are often heterogeneous. For example, combining GWASs of related but distinct traits can provide promising directions for the discovery of loci with small but common pleiotropic effects. Classical approaches for meta-analysis or pooled analysis, however, might not be suitable for such analysis because individual variants are likely to be associated with only a subset of the traits or might demonstrate effects in different directions. We propose a method that exhaustively explores subsets of studies for the presence of true association signals that are in either the same direction or possibly opposite directions. An efficient approximation is used for rapid evaluation of p values. We present two illustrative applications, one for a meta-analysis of separate case-control studies of six distinct cancers and another for pooled analysis of a case-control study of glioma, a class of brain tumors that contains heterogeneous subtypes. Both the applications and additional simulation studies demonstrate that the proposed methods offer improved power and more interpretable results when compared to traditional methods for the analysis of heterogeneous traits. The proposed framework has applications beyond genetic association studies.

Ort, förlag, år, upplaga, sidor
2012. Vol. 90, nr 5, s. 821-835
Nationell ämneskategori
Medicinsk genetik
Identifikatorer
URN: urn:nbn:se:umu:diva-55762DOI: 10.1016/j.ajhg.2012.03.015PubMedID: 22560090OAI: oai:DiVA.org:umu-55762DiVA, id: diva2:529477
Tillgänglig från: 2012-05-30 Skapad: 2012-05-30 Senast uppdaterad: 2018-06-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Melin, Beatrice S

Sök vidare i DiVA

Av författaren/redaktören
Melin, Beatrice S
Av organisationen
Onkologi
I samma tidskrift
American Journal of Human Genetics
Medicinsk genetik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 201 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf