umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hypoxia on a chip: a novel approach for patch-clamp studies in a microfluidic system with full oxygen control
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Centrum för medicinsk teknik och fysik (CMTF). Luleå University of Technology.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Centrum för medicinsk teknik och fysik (CMTF). Luleå University of Technology.
Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Fysiologi.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. Luleå University of Technology.
Vise andre og tillknytning
2013 (engelsk)Inngår i: World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China / [ed] Mian Long, Springer Berlin/Heidelberg, 2013, s. 313-316Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

A new approach to perform patch-clamp experiments on living cells under controlled anoxic and normoxic conditions was developed and tested. To provide an optimal control over the oxygen content and the biochemical environment a patch-clamp recording micropipette was integrated within an oxygen tight poly-methyl methacrylate (PMMA) based microchip. The oxygen content within the microfluidic chamber surrounding patch-clamp micropipette was maintained at 0.5-1.5 % by a continuous flow of artificial extracellular solution purged with nitrogen. The nerve and glial cells acutely obtained from the male rat brain were trapped by the optical tweezers and steered towards the patch-clamp micropipette through the channels of the microchip in order to achieve a close contact between the pipette and the cellular membrane. The patch-clamp recordings revealed that optical tweezers did not affect the electrophysiological properties of the tested cells suggesting that optical trapping is a safe and non-traumatizing method to manipulate living cells in the microfluidic system. Thus, our approach of combining optical tweezers and a gas-tight microfluidic chamber may be applied in various electrophysiological investigations of single cells were optimal control of the experimental conditions and the sample in a closed environment are necessary.

sted, utgiver, år, opplag, sider
Springer Berlin/Heidelberg, 2013. s. 313-316
Serie
IFMBE Proceedings, ISSN 1680-0737 ; 39
Emneord [en]
lab-on-a-chip, nerve cell, optical tweezers, Patch-clamp
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-83237DOI: 10.1007/978-3-642-29305-4_84ISBN: 978-3-642-29304-7 (tryckt)ISBN: 978-3-642-29305-4 (tryckt)OAI: oai:DiVA.org:umu-83237DiVA, id: diva2:665968
Konferanse
World Congress on Medical Physics and Biomedical Engineering, 26 May 2012 through 31 May 2012, Beijing
Tilgjengelig fra: 2013-11-21 Laget: 2013-11-21 Sist oppdatert: 2018-06-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Druzin, MichaelLindahl, Olof

Søk i DiVA

Av forfatter/redaktør
Druzin, MichaelLindahl, Olof
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 858 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf