umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Experimental and Kinetic Modelling Studies upon Conversion of Nordic Pulp into Levulinic Acid
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
Åbo Akademi.
Åbo Akademi.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

In this paper, sulphite cellulose from a Swedish pulp mill was applied as the raw material upon catalytic, one-pot synthesis of green platform chemicals – levulinic and formic acids. Cationic ion-exchange resin, Amberlyst 70, was the catalyst of choice and the optimal reaction conditions leading to best yields were determined. The kinetic experiments were performed in a temperature range of 180–200 °C and an initial substrate concentration regime ranging from 0.7 to 6.0 wt %. For this system, maximum theoretical yields of around 59 mol % and 68 mol % were obtained for formic and levulinic acid, respectively. These yields were achieved at a reaction temperature of 180 °C and an initial cellulose intake of 0.7 wt %. A simplified reaction network of the various chemical species involved was investigated and a mechanistic approach involving first order reaction kinetics was developed. The model was able to describe the behaviour of the system in a satisfactory manner (degree of explanation 97.8 %). Since the solid catalyst proved to exhibit good mechanical strength under the experimental conditions applied here, the concept introduces a one-pot procedure providing a route to green platform chemicals from coniferous soft wood pulp to produce levulinic and formic acids, respectively.

HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-84662OAI: oai:DiVA.org:umu-84662DiVA, id: diva2:687392
Tilgjengelig fra: 2014-01-14 Laget: 2014-01-14 Sist oppdatert: 2018-06-08bibliografisk kontrollert
Inngår i avhandling
1. Formic and Levulinic Acid from Cellulose via Heterogeneous Catalysis
Åpne denne publikasjonen i ny fane eller vindu >>Formic and Levulinic Acid from Cellulose via Heterogeneous Catalysis
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Alternativ tittel[sv]
Myr- och levulinsyra ur cellulosa via heterogen catalys
Abstract [en]

The chemical industry of today is under increased pressure to develop novel green materials, bio-fuels as well as sustainable chemicals for the chemical industry. Indeed, the endeavour is to move towards more eco-friendly cost efficient production processes and technologies and chemical transformation of renewables has a central role considering the future sustainable supply of chemicals and energy needed for societies. In the Nordic countries, the importance of pulping and paper industry has been particularly pronounced and the declining European demand on these products as a result of our digitalizing world has forced the industry to look at alternative sources of revenue and profitability. In this thesis, the production of levulinic and formic acid from biomass and macromolecules has been studied. Further, the optimum reaction conditions as well as the influence of the catalyst and biomass type were also discussed.

Nordic sulphite and sulphate (Kraft) cellulose originating from two Nordic pulp mills were used as raw materials in the catalytic synthesis of green platform chemicals, levulinic and formic acids, respectively. The catalyst of choice used in this study was a macro-porous, cationic ion-exchange resin, Amberlyst 70, for which the optimal reaction conditions leading to best yields were determined. Cellulose from Nordic pulp mills were used as raw materials in the catalytic one-pot synthesis of ‘green’ levulinic and formic acid. The kinetic experiments were performed in a temperature range of 150–200 °C and an initial substrate concentration regime ranging from 0.7 to 6.0 wt %. It was concluded that the most important parameters in the one-pot hydrolysis of biomass were the reaction temperature, initial reactant concentration, acid type as well as the raw material applied. The reaction route includes dehydration of glucose to hydroxymethylfurfural as well as its further rehydration to formic and levulinic acids. The theoretical maximum yield can hardly be obtained due to formation of humins. For this system, maximum yields of 59 mol % and 68 mol % were obtained for formic and levulinic acid, respectively. The maximum yields were separately obtained in a straight-forward conversion system only containing cellulose, water and the heterogeneous catalyst. These yields were achieved at a reaction temperature of 180 °C and an initial cellulose intake of 0.7 wt % and belong to the upper range for solid catalysts so far presented in the literature.

The reaction network of the various chemical species involved was investigated and a simple mechanistic approach involving first order reaction kinetics was developed. The concept introduces a one-pot procedure providing a feasible route to green platform chemicals obtained via conversion of coniferous soft wood pulp to levulinic and formic acids, respectively. The model was able to describe the behaviour of the system in a satisfactory manner (degree of explanation 97.8 %). Since the solid catalyst proved to exhibit good mechanical strength under the experimental conditions applied here and a one-pot procedure providing a route to green platform chemicals was developed. A simplified reaction network of the various chemical species involved was investigated and a mechanistic approach involving first order reaction kinetics was developed.

sted, utgiver, år, opplag, sider
Umeå: Umeå universitet, 2014. s. 57
Emneord
Levulinic acid, formic acid, Amberlyst 70
HSV kategori
Identifikatorer
urn:nbn:se:umu:diva-85216 (URN)978-91-7459-798-1 (ISBN)
Disputas
2014-02-14, Naturvetarhuset, N320, Umeå universitet, Umeå, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2014-01-31 Laget: 2014-01-30 Sist oppdatert: 2018-06-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Ahlkvist, JohanMikkola, Jyri-Pekka

Søk i DiVA

Av forfatter/redaktør
Ahlkvist, JohanMikkola, Jyri-Pekka
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 539 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf