umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
2014 (engelsk)Inngår i: Hydrometallurgy, ISSN 0304-386X, E-ISSN 1879-1158, Vol. 144, s. 7-14Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The majority of the world's copper reserves are bound in the sulphide mineral chalcopyrite (CuFeS2), but supply of the copper is hindered by the recalcitrance of chalcopyrite to (bio)leaching. The main reason for the slow rate of chalcopyrite dissolution is the formation of a layer on the surface of the mineral that hinders dissolution, termed "passivation". The nature of this layer and the role of microorganisms in chalcopyrite leaching behaviour are still under debate. Moderately thermophilic bioleaching of a pyritic chalcopyrite concentrate was mimicked in an electrochemical vessel to investigate the effect of the absence and presence of microorganisms in copper dissolution efficiency. Data from the redox potential development during bioleaching was used to program a redox potential controller in an electrochemical vessel to accurately reproduce the same leaching conditions in the absence of microorganisms. Two electrochemical experiments were carried out with slightly different methods of redox potential control. Despite massive precipitation of iron as jarosite in one of the electrochemically controlled experiments and formation of elemental sulphur in both electrochemical experiments, the efficiencies of copper dissolution were similar in the electrochemical tests as well as in the bioleaching experiment. No passivation was observed and copper recoveries exhibited a linear behaviour versus the leaching time possibly due to the galvanic effect between chalcopyrite and pyrite. The data suggest that the main role of microorganisms in bioleaching of a pyritic chalcopyrite concentrate was regeneration of ferric iron. It was also shown that the X-ray photoelectron spectroscopy measurements on the residues containing bulk precipitates cannot be employed for a successful surface characterisation.

sted, utgiver, år, opplag, sider
2014. Vol. 144, s. 7-14
Emneord [en]
Bioleaching, Chalcopyrite, Electrochemical cell, Redox potential, XPS, Chalcopyrite leaching, Electrochemical experiments, Electrochemical simulation, Moderately thermophilic, Pyritic chalcopyrites, Redox potentials, Surface characterisation, Copper, Copper corrosion, Dissolution, Electrochemical cells, Experiments, Microorganisms, Minerals, Passivation, Photoelectrons, Redox reactions, Secondary batteries, X ray photoelectron spectroscopy
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-86965DOI: 10.1016/j.hydromet.2013.12.003ISI: 000335614000002OAI: oai:DiVA.org:umu-86965DiVA, id: diva2:705201
Tilgjengelig fra: 2014-03-14 Laget: 2014-03-14 Sist oppdatert: 2018-06-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Shchukarev, Andrey

Søk i DiVA

Av forfatter/redaktør
Shchukarev, Andrey
Av organisasjonen
I samme tidsskrift
Hydrometallurgy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 337 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf