umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Patch and ground plane design of microstrip antennas by material distribution topologly optimization
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-1318-7519
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0003-0473-3263
2014 (engelsk)Inngår i: Progress in Electromagnetics Research B, ISSN 1937-6472, E-ISSN 1937-6472, Vol. 59, s. 89-102Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We use a gradient-based material distribution approach to design conductive parts of microstrip antennas in an efficient way. The approach is based on solutions of the 3D Maxwell's equation computed by the finite-difference time-domain (FDTD) method. Given a set of incoming waves, our objective is to maximize the received energy by determining the conductivity on each Yee-edge in the design domain. The objective function gradient is computed by the adjoint-field method. A microstrip antenna is designed to operate at 1.5 GHz with 0.3 GHz bandwidth. We present two design cases. In the first case, the radiating patch and the finite ground plane are designed in two separate phases, whereas in the second case, the radiating patch and the ground plane are simultaneously designed. We use more than 58,000 design variables and the algorithm converges in less than 150 iterations. The optimized designs have impedance bandwidths of 13% and 36% for the first and second design case, respectively.

sted, utgiver, år, opplag, sider
Electromagnetics Academy , 2014. Vol. 59, s. 89-102
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-87769DOI: 10.2528/PIERB14030605OAI: oai:DiVA.org:umu-87769DiVA, id: diva2:711069
Tilgjengelig fra: 2014-04-09 Laget: 2014-04-09 Sist oppdatert: 2018-06-08bibliografisk kontrollert
Inngår i avhandling
1. Topology optimization of antennas and waveguide transitions
Åpne denne publikasjonen i ny fane eller vindu >>Topology optimization of antennas and waveguide transitions
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis introduces a topology optimization approach to design, from scratch, efficient microwave devices, such as antennas and waveguide transitions. The design of these devices is formulated as a general optimization problem that aims to build the whole layout of the device in order to extremize a chosen objective function. The objective function quantifies some required performance and is evaluated using numerical solutions to the 3D~Maxwell's equations by the finite-difference time-domain (FDTD) method. The design variables are the local conductivity at each Yee~edge in a given design domain, and a gradient-based optimization method is used to solve the optimization problem. In all design problems, objective function gradients are computed based on solutions to adjoint-field problems, which are also FDTD discretization of Maxwell's equations but solved with different source excitations. For any number of design variables, the computation of the objective function gradient requires one solution to the original field problem and one solution to the associated adjoint-field problem. The optimization problem is solved iteratively using the globally convergent Method of Moving Asymptotes (GCMMA).

By the proposed approach, various design problems, including tens of thousands of design variables, are formulated and solved in a few hundred iterations. Examples of solved design problems are the design of wideband antennas, dual-band microstrip antennas, wideband directive antennas, and wideband coaxial-to-waveguide transitions. The fact that the proposed approach allows a fine-grained control over the whole layout of such devices results in novel devices with favourable performance. The optimization results are successfully verified with a commercial software package. Moreover, some devices are fabricated and their performance is successfully validated by experiments.

sted, utgiver, år, opplag, sider
Umeå: Umeå University, 2015. s. 29
Serie
UMINF, ISSN 0348-0542 ; 15:07
Emneord
Maxwell's equations, topology optimization, antennas, waveguide transition, finite-difference time-domain, gradient-based optimization, adjoint-field problem, microwave devices.
HSV kategori
Forskningsprogram
administrativ databehandling
Identifikatorer
urn:nbn:se:umu:diva-102505 (URN)978-91-7601-255-0 (ISBN)
Disputas
2015-05-26, Naturvetarhuset, N450, Umeå universitet, Umeå, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2015-05-05 Laget: 2015-04-27 Sist oppdatert: 2018-06-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Hassan, EmadeldeenWadbro, EddieBerggren, Martin

Søk i DiVA

Av forfatter/redaktør
Hassan, EmadeldeenWadbro, EddieBerggren, Martin
Av organisasjonen
I samme tidsskrift
Progress in Electromagnetics Research B

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 346 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf