umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Use of Two-Part Regression Calibration Model to Correct for Measurement Error in Episodically Consumed Foods in a Single-Replicate Study Design: EPIC Case Study
Vise andre og tillknytning
2014 (engelsk)Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, nr 11, s. e113160-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted twopart regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model.

sted, utgiver, år, opplag, sider
2014. Vol. 9, nr 11, s. e113160-
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-98569DOI: 10.1371/journal.pone.0113160ISI: 000345158700122PubMedID: 25402487OAI: oai:DiVA.org:umu-98569DiVA, id: diva2:783838
Tilgjengelig fra: 2015-01-27 Laget: 2015-01-23 Sist oppdatert: 2018-06-07bibliografisk kontrollert

Open Access i DiVA

fulltext(498 kB)160 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 498 kBChecksum SHA-512
eb980c023cbd7e5a018aac96adb7e042c3511486413f6e3591f1b5e155a8164beedac4ddfd9614b4de24d1fd0cc2a88d324958544d817ac0ee9ca31aab32d355
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Johansson, Ingegerd

Søk i DiVA

Av forfatter/redaktør
Johansson, Ingegerd
Av organisasjonen
I samme tidsskrift
PLoS ONE

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 160 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 413 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf