umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning
Linköping University.
Uppsala University.
Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI). Umeå universitet, Samhällsvetenskapliga fakulteten, Centrum för befolkningsstudier (CBS).ORCID-id: 0000-0002-4458-6475
Donders Institute, Radboud University.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Translational Psychiatry, ISSN 2158-3188, E-ISSN 2158-3188, Vol. 5, artikel-id e530Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cognitive behavior therapy (CBT) is an effective treatment for social anxiety disorder (SAD), but many patients do not respond sufficiently and a substantial proportion relapse after treatment has ended. Predicting an individual's long-term clinical response therefore remains an important challenge. This study aimed at assessing neural predictors of long-term treatment outcome in participants with SAD 1 year after completion of Internet-delivered CBT (iCBT). Twenty-six participants diagnosed with SAD underwent iCBT including attention bias modification for a total of 13 weeks. Support vector machines (SVMs), a supervised pattern recognition method allowing predictions at the individual level, were trained to separate long-term treatment responders from nonresponders based on blood oxygen level-dependent (BOLD) responses to self-referential criticism. The Clinical Global Impression-Improvement scale was the main instrument to determine treatment response at the 1-year follow-up. Results showed that the proportion of long-term responders was 52% (12/23). From multivariate BOLD responses in the dorsal anterior cingulate cortex (dACC) together with the amygdala, we were able to predict long-term response rate of iCBT with an accuracy of 92% (confidence interval 95% 73.2–97.6). This activation pattern was, however, not predictive of improvement in the continuous Liebowitz Social Anxiety Scale—Self-report version. Follow-up psychophysiological interaction analyses revealed that lower dACC–amygdala coupling was associated with better long-term treatment response. Thus, BOLD response patterns in the fear-expressing dACC–amygdala regions were highly predictive of long-term treatment outcome of iCBT, and the initial coupling between these regions differentiated long-term responders from nonresponders. The SVM-neuroimaging approach could be of particular clinical value as it allows for accurate prediction of treatment outcome at the level of the individual.

Ort, förlag, år, upplaga, sidor
2015. Vol. 5, artikel-id e530
Nationell ämneskategori
Psykologi
Identifikatorer
URN: urn:nbn:se:umu:diva-101037DOI: 10.1038/tp.2015.22ISI: 000367654700004OAI: oai:DiVA.org:umu-101037DiVA, id: diva2:796134
Tillgänglig från: 2015-03-18 Skapad: 2015-03-18 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Boraxbekk, Carl-Johan

Sök vidare i DiVA

Av författaren/redaktören
Boraxbekk, Carl-Johan
Av organisationen
Umeå centrum för funktionell hjärnavbildning (UFBI)Centrum för befolkningsstudier (CBS)
I samma tidskrift
Translational Psychiatry
Psykologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 200 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf