umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gene expression signature in endemic osteoarthritis by microarray analysis
School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Xi'an, China.
School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Xi'an, China.
School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Xi'an, China.
School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Xi'an, China.
Vise andre og tillknytning
2015 (engelsk)Inngår i: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 16, nr 5, s. 11465-11481Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Kashin-Beck Disease (KBD) is an endemic osteochondropathy with an unknown pathogenesis. Diagnosis of KBD is effective only in advanced cases, which eliminates the possibility of early treatment and leads to an inevitable exacerbation of symptoms. Therefore, we aim to identify an accurate blood-based gene signature for the detection of KBD. Previously published gene expression profile data on cartilage and peripheral blood mononuclear cells (PBMCs) from adults with KBD were compared to select potential target genes. Microarray analysis was conducted to evaluate the expression of the target genes in a cohort of 100 KBD patients and 100 healthy controls. A gene expression signature was identified using a training set, which was subsequently validated using an independent test set with a minimum redundancy maximum relevance (mRMR) algorithm and support vector machine (SVM) algorithm. Fifty unique genes were differentially expressed between KBD patients and healthy controls. A 20-gene signature was identified that distinguished between KBD patients and controls with 90% accuracy, 85% sensitivity, and 95% specificity. This study identified a 20-gene signature that accurately distinguishes between patients with KBD and controls using peripheral blood samples. These results promote the further development of blood-based genetic biomarkers for detection of KBD.

sted, utgiver, år, opplag, sider
Basel, Switzerland: MDPI , 2015. Vol. 16, nr 5, s. 11465-11481
Emneord [en]
Kashin-Beck disease, biomarker, gene expression signature, microarray, peripheral blood mononuclear cells
HSV kategori
Forskningsprogram
molekylär medicin (genetik och patologi); genetik
Identifikatorer
URN: urn:nbn:se:umu:diva-103826DOI: 10.3390/ijms160511465ISI: 000356241400135OAI: oai:DiVA.org:umu-103826DiVA, id: diva2:815720
Tilgjengelig fra: 2015-06-01 Laget: 2015-06-01 Sist oppdatert: 2018-06-07bibliografisk kontrollert

Open Access i DiVA

fulltext(743 kB)185 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 743 kBChecksum SHA-512
7259549373b402fd05d0c524b236b571540fb63d014dd7ef5cbe7762abb2b6375ff04e057097bfddf99e108085c3a45fb7e9ed0d2c3f08c45254716aab443c9f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Lammi, Mikko

Søk i DiVA

Av forfatter/redaktør
Lammi, Mikko
Av organisasjonen
I samme tidsskrift
International Journal of Molecular Sciences

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 185 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 729 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf