Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transient model of a panel radiator
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.ORCID iD: 0000-0002-2822-0000
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
2015 (English)In: Energy, Science and Technology 2015: Book of Abstracts. The energy conference for scientists and researchers / [ed] Karlsruher Institut für Technologie (KIT), Karlsruher, Germany: Karlsruher Institut für Technologie (KIT) , 2015, Vol. 1, p. 321-321Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

This paper shows a detailed transient model of a panel radiator considered as a system of multiple storageelements. The experiment records the temperature surface of the panel in the process of heating up. Thequalitative results of the experiment suggest the more appropriate technique for modelling this technology. The transient model performs the modelling with horizontal thermal capacitances connected in series. This modelcalculates the temperature of exhaust flow, heat emission towards indoor environment, temperature gradient onpanel surface, dead and balancing time identified numerically on the chart.

Place, publisher, year, edition, pages
Karlsruher, Germany: Karlsruher Institut für Technologie (KIT) , 2015. Vol. 1, p. 321-321
Keywords [en]
Transient model, Multiple storage elements, Heat emission, Exhaust flow, Step response
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:umu:diva-109888OAI: oai:DiVA.org:umu-109888DiVA, id: diva2:859733
Conference
EST, Energy Science Technology, International Conference & Exhibition, 20-22 May 2015, Karlsruhe, Germany
Available from: 2015-10-08 Created: 2015-10-08 Last updated: 2018-06-07Bibliographically approved
In thesis
1. Modelling and simulation of building components: thermal interaction between multilayer wall and hydronic radiator
Open this publication in new window or tab >>Modelling and simulation of building components: thermal interaction between multilayer wall and hydronic radiator
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Background and Scope: The scope of this thesis is to investigate the thermal behaviour of building components as hydronic radiator and multilayer walls subjected to dynamic conditions. The modelling and simulation of these building components provide information on how these components thermally interact among each other. The thermal interaction is fundamental to know how the energy is used in buildings. In particular, the thermal energy used in rooms can be expressed as the efficiencies for emission in a space heating system. This thesis analyzes the efficiencies for emission of a space heating system equipped with hydronic radiator for Swedish buildings by providing a comprehensive and detailed approach on this topic.

Methodology: The methods used in this thesis are: experiment, modelling of multilayer wall and hydronic radiator, the dynamic simulation of the building and the efficiencies for emission of a space heating system. Here, the experiment, known as step response test, shows the heating up process of a hydronic radiator. The observation of the qualitative measurements suggests the most suitable technique of modelling the radiator known as transient modelling with multiple storage elements. The multilayer wall has been discretized both in space and time variable with a Finite Difference Method. Dynamic simulation of the building provides the efficiencies for emission of a space heating system.

Findings: The experimental results show how the radiator performs the charging phase. The performance of the transient model is compared with lumped steady state models in terms of temperature of exhaust flow and total heat emitted. Results of the dynamic simulation show how buildings located in a Northern climate use the energy in a better way than Southern climates in Sweden. Heavy active thermal mass provides higher efficiencies for emission than light thermal mass. Radiators with connection pipes located on the same side react faster at the thermodynamic changing of the mass flow rate by providing higher efficiencies for emission than radiators with connection pipes located on the opposite side.

Conclusion and Outlook: This thesis increases the knowledge about the modelling and simulation of hydronic radiators and multilayer walls. More research is needed on this topic to encompass modelling details of building components often ignored. The modelling and simulation of building components are the key to understand how building components thermally interact with each other. The thermal interaction among building components is a fundamental parameter for the assessment of efficiencies of emission of the space heating system. In the near future, the concept of efficiencies of emission can be implemented in National Building Code, therefore, this study provides guidelines on how to assess these efficiencies.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2016. p. 39
Keywords
Hydronic radiator, multilayer wall, efficiencies of emission
National Category
Building Technologies
Research subject
Systems Analysis; engineering science with specialization in microsystems technology
Identifiers
urn:nbn:se:umu:diva-121201 (URN)978-91-7601-515-5 (ISBN)
Presentation
2016-06-15, MC413, MIT-huset, Umeå University, Umeå, 13:00 (English)
Opponent
Supervisors
Note

Advisors: Ronny Östin and Mohsen Soleimanni Mohseni, Department of Applied Physics and Electronics, Umeå University

Available from: 2016-05-30 Created: 2016-05-30 Last updated: 2021-05-11Bibliographically approved

Open Access in DiVA

fulltext(285 kB)181 downloads
File information
File name FULLTEXT01.pdfFile size 285 kBChecksum SHA-512
061c6a80f299968eeca141e8e8ff57c4a30ebc804754e6f284bffb321b60e220480a379ea88b5b82b19d053a3c6e56718cb9b971d87f91d61e23d2cc6d4a3f85
Type fulltextMimetype application/pdf

Other links

URLURL

Authority records

Brembilla, ChristianSoleimani-Mohseni, MohsenOlofsson, Thomas

Search in DiVA

By author/editor
Brembilla, ChristianSoleimani-Mohseni, MohsenOlofsson, Thomas
By organisation
Department of Applied Physics and Electronics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 181 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 654 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf