Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Methods to determine photorespiratory metabolic pools to improve plant productivity
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
2015 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Photorespiration can limit growth of C3 plants especially under stressful conditions. Current models for future climate change predict hotter and dryer conditions in many areas, which would significantly increase photorespiration and subsequently affect crop production. Modification and engineering of photorespiration is thereby one current approach to compensate the loss of crop production affected by climate change. In this study, we employed two main strategies to better understand the dynamics of photorespiration. A counter-dogmatic accumulation of photorespiratory metabolites was identified in an Arabidopsis thaliana gox1 photorespiratory mutant therefore challenging our current understanding of the photorespiratory pathway. Here, a novel method combining protoplasts fractionation, Solid Phase Extraction and GC-MS techniques was developed to identify the sub-cellular compartmentation of these metabolites. The second strategy was detecting metabolic changes in the grass Alloteropsis semialata, which occurs as C3-, C4-, and C3-C4–intermediate (so-called C2) genotypes, using NMR-detected deuterium isotope fractionation. By exploiting the advantage that isotopomers (intramolecular isotope distributions) are a fingerprint of the regulation of photosynthetic and photorespiratory C metabolism, the deuterium isotopomer patterns of glucose derived from the genotypes allowed us to test for metabolic shifts among the genotypes. The comparison showed that there is no significant difference in isotopomer pattern among A. semialata subspecies i.e. C3, C4 and C3-C4 genotypes. These results suggest that the Calvin cycle operates with the same enzyme regulation in all genotypes. This surprising conclusion may be compatible with several previous observations, if one assumes that the C4 photosynthesis if only partly functional in the C4 genotypes. Altogether, this study contributes both technically and theoretically to better understand the dynamic of photorespiration.

Ort, förlag, år, upplaga, sidor
2015.
Nationell ämneskategori
Botanik
Identifikatorer
URN: urn:nbn:se:umu:diva-111071OAI: oai:DiVA.org:umu-111071DiVA, id: diva2:871783
Handledare
Examinatorer
Tillgänglig från: 2015-12-22 Skapad: 2015-11-03 Senast uppdaterad: 2015-12-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Av organisationen
Institutionen för fysiologisk botanikUmeå Plant Science Centre (UPSC)
Botanik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 663 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf