umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Comparison of Two Strategies for Building an Exposure Prediction Model.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Annals of Occupational Hygiene, ISSN 0003-4878, E-ISSN 1475-3162, Vol. 60, nr 1, s. 74-89Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cost-efficient assessments of job exposures in large populations may be obtained from models in which 'true' exposures assessed by expensive measurement methods are estimated from easily accessible and cheap predictors. Typically, the models are built on the basis of a validation study comprising 'true' exposure data as well as an extensive collection of candidate predictors from questionnaires or company data, which cannot all be included in the models due to restrictions in the degrees of freedom available for modeling. In these situations, predictors need to be selected using procedures that can identify the best possible subset of predictors among the candidates. The present study compares two strategies for selecting a set of predictor variables. One strategy relies on stepwise hypothesis testing of associations between predictors and exposure, while the other uses cluster analysis to reduce the number of predictors without relying on empirical information about the measured exposure. Both strategies were applied to the same dataset on biomechanical exposure and candidate predictors among computer users, and they were compared in terms of identified predictors of exposure as well as the resulting model fit using bootstrapped resamples of the original data. The identified predictors were, to a large part, different between the two strategies, and the initial model fit was better for the stepwise testing strategy than for the clustering approach. Internal validation of the models using bootstrap resampling with fixed predictors revealed an equally reduced model fit in resampled datasets for both strategies. However, when predictor selection was incorporated in the validation procedure for the stepwise testing strategy, the model fit was reduced to the extent that both strategies showed similar model fit. Thus, the two strategies would both be expected to perform poorly with respect to predicting biomechanical exposure in other samples of computer users.

Ort, förlag, år, upplaga, sidor
2016. Vol. 60, nr 1, s. 74-89
Nyckelord [en]
bias, optimism, statistical performance, variable selection
Nationell ämneskategori
Arbetsmedicin och miljömedicin
Identifikatorer
URN: urn:nbn:se:umu:diva-111616DOI: 10.1093/annhyg/mev072ISI: 000369997400007PubMedID: 26424806OAI: oai:DiVA.org:umu-111616DiVA, id: diva2:872165
Tillgänglig från: 2015-11-18 Skapad: 2015-11-18 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Wahlström, Jens

Sök vidare i DiVA

Av författaren/redaktören
Wahlström, Jens
Av organisationen
Yrkes- och miljömedicin
I samma tidskrift
Annals of Occupational Hygiene
Arbetsmedicin och miljömedicin

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 138 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf