umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On quasi-arithmetic mean based filters and their fast evaluation for large-scale topology optimization
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2015 (Engelska)Ingår i: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488, Vol. 52, nr 5, s. 879-888Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

In material distribution topology optimization, restriction methods are routinely applied to obtain well-posed optimization problems and to achieve mesh-independence of the resulting designs. One of the most popular restriction methods is to use a filtering procedure. In this paper, we present a framework where the filtering process is viewed as a quasi-arithmetic mean (or generalized f-mean) over a neighborhood with the possible addition of an extra "projection step". This framework includes the vast majority of available filters for topology optimization. The covered filtering procedures comprise three steps: (i) element-wise application of a function, (ii) computation of local averages, and (iii) element-wise application of another function. We present fast algorithms that apply this type of filters over polytope-shaped neighborhoods on regular meshes in two and three spatial dimensions. These algorithms have a computational cost that grows linearly with the number of elements and can be bounded irrespective of the filter radius.

Ort, förlag, år, upplaga, sidor
Springer, 2015. Vol. 52, nr 5, s. 879-888
Nyckelord [en]
Topology optimization, Regularization, Filters, Fast algorithm, Large-scale problems
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-114034DOI: 10.1007/s00158-015-1273-5ISI: 000366590800003OAI: oai:DiVA.org:umu-114034DiVA, id: diva2:892676
Tillgänglig från: 2016-01-11 Skapad: 2016-01-11 Senast uppdaterad: 2018-06-07Bibliografiskt granskad
Ingår i avhandling
1. Quasi-Arithmetic Filters for Topology Optimization
Öppna denna publikation i ny flik eller fönster >>Quasi-Arithmetic Filters for Topology Optimization
2016 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Kvasiaritmetiska filter för topologioptimering
Abstract [en]

Topology optimization is a framework for finding the optimal layout of material within a given region of space. In material distribution topology optimization, a material indicator function determines the material state at each point within the design domain. It is well known that naive formulations of continuous material distribution topology optimization problems often lack solutions. To obtain numerical solutions, the continuous problem is approximated by a finite-dimensional problem. The finite-dimensional approximation is typically obtained by partitioning the design domain into a finite number of elements and assigning to each element a design variable that determines the material state of that element. Although the finite-dimensional problem generally is solvable, a sequence of solutions corresponding to ever finer partitions of the design domain may not converge; that is, the optimized designs may exhibit mesh-dependence. Filtering procedures are amongst the most popular methods used to handle the existence issue related to the continuous problem as well as the mesh-dependence related to the finite-dimensional approximation. Over the years, a variety of filters for topology optimization have been presented.

To harmonize the use and analysis of filters within the field of topology optimization, we introduce the class of fW-mean filters that is based on the weighted quasi-arithmetic mean, also known as the weighted generalized f-mean, over some neighborhoods. We also define the class of generalized fW-mean filters that contains the vast majority of filters for topology optimization. In particular, the class of generalized fW-mean filters includes the fW-mean filters, as well as the projected fW-mean filters that are formed by adding a projection step to the fW-mean filters.

If the design variables are located in a regular grid, uniform weights are used within each neighborhood, and equal sized polytope shaped neighborhoods are used, then a cascade of generalized fW-mean filters can be applied with a computational complexity that is linear in the number of design variables. Detailed algorithms for octagonal shaped neighborhoods in 2D and rhombicuboctahedron shaped neighborhoods in 3D are provided. The theoretically obtained computational complexity of the algorithm for octagonal shaped neighborhoods in 2D has been numerically verified. By using the same type of algorithm as for filtering, the additional computational complexity for computing derivatives needed in gradient based optimization is also linear in the number of design variables.

To exemplify the use of generalized fW-mean filters in topology optimization, we consider minimization of compliance (maximization of global stiffness) of linearly elastic continuum bodies. We establish the existence of solutions to a version of the continuous minimal compliance problem when a cascade of projected continuous fW-mean filters is included in the formulation. Bourdin's classical existence result for the linear density filter is a partial case of this general theorem for projected continuous fW-mean filters. Inspired by the works of Svanberg & Svärd and Sigmund, we introduce the harmonic open-close filter, which is a cascade of four fW-mean filters. We present large-scale numerical experiments indicating that, for minimal compliance problems, the harmonic open-close filter produces almost binary designs, provides independent size control on both material and void regions, and yields mesh-independent designs.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå Universitet, 2016. s. 23
Serie
Report / UMINF, ISSN 0348-0542 ; 16.04
Nationell ämneskategori
Beräkningsmatematik Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:umu:diva-116983 (URN)978-91-7601-409-7 (ISBN)
Presentation
2016-02-19, Umeå universitet, Umeå, 09:00
Handledare
Forskningsfinansiär
eSSENCE - An eScience CollaborationVetenskapsrådet, 621-3706
Tillgänglig från: 2016-02-25 Skapad: 2016-02-16 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Wadbro, EddieHägg, Linus

Sök vidare i DiVA

Av författaren/redaktören
Wadbro, EddieHägg, Linus
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
Structural and multidisciplinary optimization (Print)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 246 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf