umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A treelet transform analysis to relate nutrient patterns to the risk of hormonal receptor-defined breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC)
Vise andre og tillknytning
2016 (engelsk)Inngår i: Public Health Nutrition, ISSN 1368-9800, E-ISSN 1475-2727, Vol. 19, nr 2, s. 242-254Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Objective Pattern analysis has emerged as a tool to depict the role of multiple nutrients/foods in relation to health outcomes. The present study aimed at extracting nutrient patterns with respect to breast cancer (BC) aetiology. Design Nutrient patterns were derived with treelet transform (TT) and related to BC risk. TT was applied to twenty-three log-transformed nutrient densities from dietary questionnaires. Hazard ratios (HR) and 95 % confidence intervals computed using Cox proportional hazards models quantified the association between quintiles of nutrient pattern scores and risk of overall BC, and by hormonal receptor and menopausal status. Principal component analysis was applied for comparison. Setting The European Prospective Investigation into Cancer and Nutrition (EPIC). Subjects Women (n 334 850) from the EPIC study. Results The first TT component (TC1) highlighted a pattern rich in nutrients found in animal foods loading on cholesterol, protein, retinol, vitamins B-12 and D, while the second TT component (TC2) reflected a diet rich in -carotene, riboflavin, thiamin, vitamins C and B-6, fibre, Fe, Ca, K, Mg, P and folate. While TC1 was not associated with BC risk, TC2 was inversely associated with BC risk overall (HRQ5 v. Q1=089, 95 % CI 083, 095, P-trend<001) and showed a significantly lower risk in oestrogen receptor-positive (HRQ5 v. Q1=089, 95 % CI 081, 098, P-trend=002) and progesterone receptor-positive tumours (HRQ5 v. Q1=087, 95 % CI 077, 098, P-trend<001). Conclusions TT produces readily interpretable sparse components explaining similar amounts of variation as principal component analysis. Our results suggest that participants with a nutrient pattern high in micronutrients found in vegetables, fruits and cereals had a lower risk of BC.

sted, utgiver, år, opplag, sider
2016. Vol. 19, nr 2, s. 242-254
Emneord [en]
Nutrient patterns, Treelet transform, Breast cancer, European Prospective Investigation into Cancer and Nutrition, Principal component analysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-119309DOI: 10.1017/S1368980015000294ISI: 000372639900006PubMedID: 25702596OAI: oai:DiVA.org:umu-119309DiVA, id: diva2:920204
Tilgjengelig fra: 2016-04-17 Laget: 2016-04-15 Sist oppdatert: 2018-06-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Johansson, Ingegerd

Søk i DiVA

Av forfatter/redaktør
Johansson, Ingegerd
Av organisasjonen
I samme tidsskrift
Public Health Nutrition

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 533 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf