Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ceres interaction with the solar wind
Umeå University, Faculty of Science and Technology, Department of Physics. Swedish Institute of Space Physics, Kiruna.ORCID iD: 0000-0002-5765-2806
Swedish Institute of Space Physics, Kiruna.
Space Sciences Laboratory, UC Berkeley.
Swedish Institute of Space Physics, Kiruna.
Show others and affiliations
2017 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, no 5, p. 2070-2077Article in journal (Refereed) Published
Abstract [en]

The solar wind interaction with Ceres is studied for a high water vapor release from its surface using a hybrid model including photoionization. We use a water vapor production rate of 6 kg/s, thought to be due to subsurface sublimation, corresponding to a detection on 6 March 2013 by the Herschel Space Observatory. We present the general morphology of the plasma interactions, both close to Ceres and on a larger scale. Mass loading of water ions causes a magnetic pileup region in front of Ceres, where the solar wind deflects up to 15 ∘ and slows down by 15%. The global plasma interaction with Ceres is not greatly affected by the source location of water vapor nor on gravity, only on the production rate of water vapor. On a global scale, Ceres has a comet-like interaction with the solar wind with observable perturbations farther than 250 Ceres radii downstream of the body.

Place, publisher, year, edition, pages
2017. Vol. 44, no 5, p. 2070-2077
National Category
Fusion, Plasma and Space Physics
Research subject
Space and Plasma Physics
Identifiers
URN: urn:nbn:se:umu:diva-119797DOI: 10.1002/2016GL072375ISI: 000398183700003Scopus ID: 2-s2.0-85014516987OAI: oai:DiVA.org:umu-119797DiVA, id: diva2:923878
Funder
Swedish National Space BoardAvailable from: 2016-04-27 Created: 2016-04-27 Last updated: 2023-03-24Bibliographically approved
In thesis
1. Plasma Interactions with Icy Bodies in the Solar System
Open this publication in new window or tab >>Plasma Interactions with Icy Bodies in the Solar System
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Plasmaväxelverkan med isiga kroppar i solsystemet
Abstract [en]

Here I study the “plasma interactions with icy bodies in the solar system”, that is, my quest to understand the fundamental processes that govern such interactions. By using numerical modelling combined with in situ observations, one can infer the internal structure of icy bodies and their plasma environments.

After a broad overview of the laws governing space plasmas a more detailed part follows. This contains the method on how to model the interaction between space plasmas and icy bodies. Numerical modelling of space plasmas is applied to the icy bodies Callisto (a satellite of Jupiter), the dwarf planet Ceres (located in the asteroid main belt) and the comet 67P/Churyumov-Gerasimenko.

The time-varying magnetic field of Jupiter induces currents inside the electrically conducting moon Callisto. These create magnetic field perturbations thought to be related to conducting subsurface oceans. The flow of plasma in the vicinity of Callisto is greatly affected by these magnetic field perturbations. By using a hybrid plasma solver, the interaction has been modelled when including magnetic induction and agrees well with magnetometer data from flybys (C3 and C9) made by the Galileo spacecraft. The magnetic field configuration allows an inflow of ions onto Callisto’s surface in the central wake. Plasma that hits the surface knocks away matter (sputtering) and creates Callisto’s tenuous atmosphere.

A long term study of solar wind protons as seen by the Rosetta spacecraft was conducted as the comet 67P/Churyumov-Gerasimenko approached the Sun. Here, extreme ultraviolet radiation from the Sun ionizes the neutral water of the comet’s coma. Newly produced water ions get picked up by the solar wind flow, and forces the solar wind protons to deflect due to conservation of momentum. This effect of mass-loading increases steadily as the comet draws closer to the Sun. The solar wind is deflected, but does not lose much energy. Hybrid modelling of the solar wind interaction with the coma agrees with the observations; the force acting to deflect the bulk of the solar wind plasma is greater than the force acting to slow it down.

Ceres can have high outgassing of water vapour, according to observations by the Herschel Space Observatory in 2012 and 2013. There, two regions were identified as sources of water vapour. As Ceres rotates, so will the source regions. The plasma interaction close to Ceres depends greatly on the source location of water vapour, whereas far from Ceres it does not. On a global scale, Ceres has a comet-like interaction with the solar wind, where the solar wind is perturbed far downstream of Ceres.

Abstract [sv]

Här studerar jag “plasmaväxelverkan med isiga kroppar i solsystemet”, det vill säga, min strävan är att förstå de grundläggande processerna som styr sådana interaktioner. Genom att använda numerisk modellering i kombination med observationer på plats vid himlakropparna kan man förstå sig på deras interna strukturer och rymdmiljöer.

Efter en bred översikt över de fysiska lagar som styr ett rymdplasma följer en mer detaljerad del. Denna innehåller metoder för hur man kan modellera växelverkan mellan rymdplasma och isiga kroppar. Numerisk modellering av rymdplasma appliceras på de isiga himlakropparna Callisto (en måne kring Jupiter), dvärgplaneten Ceres (lokaliserad i asteroidbältet mellan Mars och Jupiter) och kometen 67P/Churyumov-Gerasimenko.

Det tidsvarierande magnetiska fältet kring Jupiter inducerar strömmar inuti den elektriskt ledande månen Callisto. Dessa strömmar skapar magnetfältsstörningar som tros vara relaterade till ett elektriskt ledande hav under Callistos yta. Plasmaflödet i närheten av Callisto påverkas i hög grad av dessa magnetfältsstörningar. Genom att använda en hybrid-plasma-lösare har växelverkan modellerats, där effekten av magnetisk induktion har inkluderats. Resultaten stämmer väl överens med magnetfältsdata från förbiflygningarna av Callisto (C3 och C9) som gjordes av den obemannade rymdfarkosten Galileo i dess bana kring Jupiter. Den magnetiska konfigurationen som uppstår möjliggör ett inflöde av laddade joner på Callistos baksida. Plasma som träffar ytan slår bort materia och skapar Callistos tunna atmosfär.

En långtidsstudie av solvindsprotoner sett från rymdfarkosten Rosetta utfördes då kometen 67P/Churyumov-Gerasimenko närmade sig solen. Ultraviolett strålning från solen joniserar det neutrala vattnet i kometens koma (kometens atmosfär). Nyligt joniserade vattenmolekyler plockas upp av solvindsflödet och tvingar solvindsprotonernas banor att böjas av, så att rörelsemängden bevaras. Denna effekt ökar stadigt då kometen närmar sig solen. Solvinden böjs av kraftigt, men förlorar inte mycket energi. Hybridmodellering av solvindens växelverkan bekräftar att kraften som verkar på solvinden till störst del får den att böjas av, medan kraften som verkar till att sänka dess fart är mycket lägre.

Ceres har enligt observationer av rymdteleskopet Herschel under 2012 och 2013 haft högt utflöde av vattenånga från dess yta. Där har två regioner identifierats som källor för vattenångan. Eftersom Ceres roterar kommer källornas regioner göra det också. Plasmaväxelverkan i närheten av Ceres beror i hög grad på vattenångskällans placeringen, medan det inte gör det långt ifrån Ceres. På global nivå har Ceres en kometliknande växelverkan med solvinden, där störningar i solvinden propagerar långt nedströms från Ceres.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2016. p. 80
Series
IRF Scientific Report, ISSN 0284-1703 ; 307
Keywords
plasma interactions, icy bodies, solar system, space physics, plasma physics, hybrid model, numerical model, solar wind, magnetosphere, sub-Alfvénic, subsonic, non-collisional, atmosphereless, exosphere, coma, subsurface ocean, induction, magnetic dipole, pick-up ion, mass-loading, moon, natural satellite, dwarf planet, comet, Jupiter, Jovian, Callisto, Ceres, 67P, Churyumov-Gerasimenko
National Category
Fusion, Plasma and Space Physics
Research subject
Space and Plasma Physics
Identifiers
urn:nbn:se:umu:diva-117666 (URN)978-91-982951-1-5 (ISBN)
External cooperation:
Public defence
2016-05-31, Aulan, Rymdcampus 1, Kiruna, 09:00 (English)
Opponent
Supervisors
Funder
Swedish National Space BoardThe Royal Swedish Academy of Sciences
Available from: 2016-05-10 Created: 2016-03-03 Last updated: 2018-06-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lindkvist, JesperHolmström, MatsWieser, MartinBarabash, Stas

Search in DiVA

By author/editor
Lindkvist, JesperHolmström, MatsWieser, MartinBarabash, Stas
By organisation
Department of Physics
In the same journal
Geophysical Research Letters
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 576 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf