umu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
Vise andre og tillknytning
2006 (engelsk)Inngår i: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313X, Vol. 45, nr 2, s. 144-165Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Stems and branches of angiosperm trees form tension wood (TW) when exposed to a gravitational stimulus. One of the main characteristics of TW, which distinguishes it from normal wood, is the formation of fibers with a thick inner gelatinous cell wall layer mainly composed of crystalline cellulose. Hence TW is enriched in cellulose, and deficient in lignin and hemicelluloses. An expressed sequence tag library made from TW-forming tissues in Populus tremula (L.) x tremuloides (Michx.) and data from transcript profiling using microarray and metabolite analysis were obtained during TW formation in Populus tremula (L.) in two growing seasons. The data were examined with the aim of identifying the genes responsible for the change in carbon (C) flow into various cell wall components, and the mechanisms important for the formation of the gelatinous cell wall layer (G-layer). A specific effort was made to identify carbohydrate-active enzymes with a putative function in cell wall biosynthesis. An increased C flux to cellulose was suggested by a higher abundance of sucrose synthase transcripts. However, genes related to the cellulose biosynthetic machinery were not generally affected, although the expression of secondary wall-specific CesA genes was modified in both directions. Other pathways for which the data suggested increased activity included lipid and glucosamine biosynthesis and the pectin degradation machinery. In addition, transcripts encoding fasciclin-like arabinogalactan proteins were particularly increased and found to lack true Arabidopsis orthologs. Major pathways for which the transcriptome and metabolome analysis suggested decreased activity were the pathway for C flux through guanosine 5'-diphosphate (GDP) sugars to mannans, the pentose phosphate pathway, lignin biosynthesis, and biosynthesis of cell wall matrix carbohydrates. Several differentially expressed auxin- and ethylene-related genes and transcription factors were also identified.

sted, utgiver, år, opplag, sider
Malden: Wiley-Blackwell, 2006. Vol. 45, nr 2, s. 144-165
Emneord [en]
cell walls, development, poplar, cellulose, hemicellulose, lignin
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-119420DOI: 10.1111/j.1365-313X.2005.02584.xISI: 000234129600002PubMedID: 16367961OAI: oai:DiVA.org:umu-119420DiVA, id: diva2:926652
Tilgjengelig fra: 2016-05-09 Laget: 2016-04-18 Sist oppdatert: 2018-06-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Nilsson, Peter

Søk i DiVA

Av forfatter/redaktør
Nilsson, Peter
Av organisasjonen
I samme tidsskrift
The Plant Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 258 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf