umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effects of Nutrient Loading and Mercury Chemical Speciation on the Formation and Degradation of Methylmercury in Estuarine Sediment
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. (EcoChange)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå marina forskningscentrum (UMF). (EcoChange; UMFpub)
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 50, nr 13, s. 6983-6990Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Net formation of methylmercury (MeHg) in sediments is known to be affected by the availability of inorganic divalent mercury (HgII) and by the activities of HgII methylating and MeHg demethylating bacteria. Enhanced autochthonous organic matter deposition to the benthic zone, following increased loading of nutrients to the pelagic zone, has been suggested to increase the activity of HgII methylating bacteria and thus the rate of net methylation. However, the impact of increased nutrient loading on the biogeochemistry of mercury (Hg) is challenging to predict as different geochemical pools of Hg may respond differently to enhanced bacterial activities. Here, we investigate the combined effects of nutrient (N and P) supply to the pelagic zone and the chemical speciation of HgII and of MeHg on MeHg formation and degradation in a brackish sediment-water mesocosm model ecosystem. By use of Hg isotope tracers added in situ to the mesocosms or ex situ in incubation experiments, we show that the MeHg formation rate increased with nutrient loading only for HgII tracers with a high availability for methylation. Tracers with low availability did not respond significantly to nutrient loading. Thus, both microbial activity (stimulated indirectly through plankton biomass production by nutrient loading) and HgII chemical speciation were found to control the MeHg formation rate in marine sediments. 

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2016. Vol. 50, nr 13, s. 6983-6990
Nationell ämneskategori
Kemi
Identifikatorer
URN: urn:nbn:se:umu:diva-125668DOI: 10.1021/acs.est.6b01567ISI: 000379366300047OAI: oai:DiVA.org:umu-125668DiVA, id: diva2:970579
Anmärkning

Special issue: Jerald L. Schnoor tribute issue

Tillgänglig från: 2016-09-14 Skapad: 2016-09-14 Senast uppdaterad: 2018-06-07Bibliografiskt granskad
Ingår i avhandling
1. Determination of mercury chemical speciation in the presence of low molecular mass thiols and its importance for mercury methylation
Öppna denna publikation i ny flik eller fönster >>Determination of mercury chemical speciation in the presence of low molecular mass thiols and its importance for mercury methylation
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Methylmercury (MeHg) is a neurotoxic compound that threatens the well-being of humans and wildlife. It is formed through the methylation of inorganic mercury (HgII) under suboxic/anoxic conditions in soils, sediment and waters. The chemical speciation of HgII, including specific HgII species in aqueous and solid/adsorbed phases, plays a key role in MeHg formation. Chemical forms of HgII which have been reported to be available for uptake in methylating bacteria include neutral HgII–sulfide complexes, HgII complexes with specific low molecular mass (LMM) thiols, and nanoparticulate HgS(s). Accurate determination of the chemical speciation of HgII is thus crucial when elucidating the mechanism of MeHg formation. The concentration of HgII–LMM thiols complexes is predicted to be extremely low (sub fM range). Current analytical methods do not allow direct quantification of HgII complexes due to the very low concentration of these complexes, and therefore determination rely on thermodynamic modeling. Accurate stability constants for HgII–LMM thiols complexes and quantification of LMM thiol ligands in environments are thus required to precisely determine the concentration of such complexes.

In this thesis, a novel analytical method was developed based on online pre-concentration coupled with liquid chromatography tandem mass spectrometry to determine the concentration of 16 LMM thiols (Paper I). This method was successful in detecting 8 LMM thiols in boreal wetland porewaters, with mercaptoacetic acid and cysteine being the most abundant. The total concentration of individual detected LMM thiols ranged from sub nM (LOD=0.1 nM) to 77 nM. Moreover, the stability constant (β2) for HgII complexes with 15 LMM thiols were directly determined for the first time by competing ligand exchange experiments combined with liquid chromatography ICPMS analysis (Paper II). Values of log β2 for the reaction Hg2+ + 2LMM-RS- = Hg(LMM-RS)2 ranged from 34.6 for. Based on the determined constants of Hg(LMM-RS)2 complexes and state-of-the-art constants from literature for other HgII complexes, we established comprehensive thermodynamic speciation models for MeHg and HgII in boreal wetlands (Paper III). The speciation of HgII was coupled with the HgII methylation rate constant (km) determined with different enriched Hg isotope tracers (Paper IV). There was a good correlation (R2=0.88) between the km determined by a HgII(aq) tracer added as Hg(NO3)2 with high bioavailability and a tracer where HgII was bond to thiol groups in natural organic matter (HgII-NOM(ads)) and has a lower bioavailability. The HgII(aq) tracer was consistently methylated at 5 times higher rate than the HgII-NOM(ads) tracer. A good correlation was observed between the concentration of biologically produced LMM thiols and km in the boreal wetlands. In a mesocosm study of estuarine sediment-brackish water systems, increased concentration of phytoplankton chlorophyll α due to macro nutrient additions led to an increase in HgII methylation rate of the HgII(aq) but not of the HgII-NOM(ads) tracer or ambient HgII species (Paper V). Furthermore, simulated newly deposited HgII species from atmospheric and terrestrial sources were exhibited significantly higher HgII methylation rates when compared with simulated aged sediment HgII pools. Through the development and adoption of novel analytical methods, this thesis reveals the significance of LMM thiols in Hg biogeochemistry by precise determination of HgII–LMM thiol complexes in natural environmental systems.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2016. s. 45
Nyckelord
Mercury, methylmercury, LMM thiol, mass spectrometry, biogeochemistry, soil, sediment, ICP, WinSGW, modeling, S XANES, ligand exchange, stability constant, boreal wetlands
Nationell ämneskategori
Analytisk kemi
Forskningsämne
analytisk kemi; biologi, miljövetenskap
Identifikatorer
urn:nbn:se:umu:diva-119938 (URN)978-91-7601-469-1 (ISBN)
Disputation
2016-06-08, KBC-huset, KB3A9, Umeå Universitet, Umeå, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-05-18 Skapad: 2016-05-03 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Liem-Nguyen, VanJonsson, SofiAndersson, AgnetaLundberg, ErikBjörn, Erik

Sök vidare i DiVA

Av författaren/redaktören
Liem-Nguyen, VanJonsson, SofiAndersson, AgnetaLundberg, ErikBjörn, Erik
Av organisationen
Kemiska institutionenUmeå marina forskningscentrum (UMF)Institutionen för ekologi, miljö och geovetenskap
I samma tidskrift
Environmental Science and Technology
Kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 476 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf