umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2016 (English)In: Biotechnology progress (Print), ISSN 8756-7938, E-ISSN 1520-6033, Vol. 32, no 4, 1077-1084 p.Article in journal (Refereed) Published
Abstract [en]

Bacterial nanocellulose (BNC) is a microbial nanofibrillar hydrogel with many potential applications. Its use is largely restricted by insufficient strength when in a highly swollen state and by inefficient production using static cultivation. In this study, an in situ nanocellulose-coating technology created a fabric-frame reinforced nanocomposite of BNC hydrogel with superior strength but retained BNC native attributes. By using the proposed technology, production time could be reduced from 10 to 3 days to obtain a desirable hydrogel sheet with approximately the same thickness. This novel technology is easier to scale up and is more suitable for industrial-scale manufacture. The mechanical properties (tensile strength, suture retention strength) and gel characteristics (water holding, absorption and wicking ability) of the fabric-reinforced BNC hydrogel were investigated and compared with those of ordinary BNC hydrogel sheets. The results reveal that the fabric-reinforced BNC hydrogel was equivalent with regard to gel characteristics, and exhibited a qualitative improvement with regard to its mechanical properties. For more advanced applications, coating technology via dynamic bacterial cultures could be used to upgrade conventional biomedical fabrics, i.e. medical cotton gauze or other mesh materials, with nanocellulose.

Place, publisher, year, edition, pages
Wiley-Blackwell, 2016. Vol. 32, no 4, 1077-1084 p.
Keyword [en]
bacterial cellulose, skeleton-reinforced hydrogel, horizontal rotating bioreactor, in situ dynamic coating technology, cotton gauze composite
National Category
Biochemistry and Molecular Biology Microbiology
Identifiers
URN: urn:nbn:se:umu:diva-126755DOI: 10.1002/btpr.2280ISI: 000383396800028PubMedID: 27088548OAI: oai:DiVA.org:umu-126755DiVA: diva2:1038396
Available from: 2016-10-18 Created: 2016-10-13 Last updated: 2016-10-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Jönsson, Leif J.
By organisation
Department of Chemistry
In the same journal
Biotechnology progress (Print)
Biochemistry and Molecular BiologyMicrobiology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 29 hits
ReferencesLink to record
Permanent link

Direct link