Change search
ReferencesLink to record
Permanent link

Direct link
A Simple and Accurate Method To Calculate Free Energy Profiles and Reaction Rates from Restrained Molecular Simulations of Diffusive Processes
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2016 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 120, no 33, 8457-8472 p.Article in journal (Refereed) Published
Abstract [en]

A method is developed to obtain simultaneously free energy profiles and diffusion constants from restrained molecular simulations in diffusive systems. The method is based on low-order expansions of the free energy and diffusivity as functions of the reaction coordinate. These expansions lead to simple analytical relationships between simulation statistics and model parameters. The method is tested on 1D and 2D model systems; its accuracy is found to be comparable to or better than that of the existing alternatives, which are briefly discussed. An important aspect of the method is that the free energy is constructed by integrating its derivatives, which can be computed without need for overlapping sampling windows. The implementation of the method in any molecular simulation program that supports external umbrella potentials (e.g., CHARMM) requires modification of only a few lines of code. As a demonstration of its applicability to realistic biomolecular systems, the method is applied to model the alpha-helix <-> beta-sheet transition in a 16-residue peptide in implicit solvent, with the reaction coordinate provided by the string method. Possible modifications of the method are briefly discussed; they include generalization to multidimensional reaction coordinates [in the spirit of the model of Ermak and McCammon (Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352-1360)], a higher-order expansion of the free energy surface, applicability in nonequilibrium systems, and a simple test for Markovianity. In view of the small overhead of the method relative to standard umbrella sampling, we suggest its routine application in the cases where umbrella potential simulations are appropriate.

Place, publisher, year, edition, pages
2016. Vol. 120, no 33, 8457-8472 p.
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
URN: urn:nbn:se:umu:diva-126513DOI: 10.1021/acs.jpcb.6b02139ISI: 000382180200039PubMedID: 27135391OAI: diva2:1040080
Available from: 2016-10-26 Created: 2016-10-10 Last updated: 2016-10-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Nam, Kwangho
By organisation
Department of Chemistry
In the same journal
Journal of Physical Chemistry B
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 37 hits
ReferencesLink to record
Permanent link

Direct link