umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Parallel algorithms for tensor completion in the CP format
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-4675-7434
2016 (Engelska)Ingår i: Parallel Computing, ISSN 0167-8191, E-ISSN 1872-7336, Vol. 57, s. 222-234Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Low-rank tensor completion addresses the task of filling in missing entries in multidimensional data. It has proven its versatility in numerous applications, including context aware recommender systems and multivariate function learning. To handle large-scale datasets and applications that feature high dimensions, the development of distributed algorithms is central. In this work, we propose novel, highly scalable algorithms based on a combination of the canonical polyadic (CP) tensor format with block coordinate descent methods. Although similar algorithms have been proposed for the matrix case, the case of higher dimensions gives rise to a number of new challenges and requires a different paradigm for data distribution. The convergence of our algorithms is analyzed and numerical experiments illustrate their performance on distributed-memory architectures for tensors from a range of different applications.

Ort, förlag, år, upplaga, sidor
2016. Vol. 57, s. 222-234
Nyckelord [en]
low-rank tensor completion, canonical tensor format, parallel tensor completion, parallel cyclic coordinate descent, parallel alternating least squares
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-126508DOI: 10.1016/j.parco.2015.10.002ISI: 000383307100017Scopus ID: 2-s2.0-84989869244OAI: oai:DiVA.org:umu-126508DiVA, id: diva2:1040408
Tillgänglig från: 2016-10-27 Skapad: 2016-10-10 Senast uppdaterad: 2018-06-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Karlsson, Lars

Sök vidare i DiVA

Av författaren/redaktören
Karlsson, Lars
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
Parallel Computing
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 92 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf