umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Unraveling the Phosphocholination Mechanism of the Legionella pneumophila Enzyme AnkX
Show others and affiliations
2016 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 55, no 31, 4375-4385 p.Article in journal (Refereed) Published
Abstract [en]

The intracellular pathogen Legionella pneumophila infects lung macrophages and injects numerous effector proteins into the host cell to establish a vacuole for proliferation. The necessary interference with vesicular trafficking of the host is achieved by modulation of the function of Rab GTPases. The effector protein AnkX chemically modifies Rab1b and Rab35 by covalent phosphocholination of serine or threonine residues using CDP-choline as a donor. So far, the phosphoryl transfer mechanism and the relevance of observed autophosphocholination of AnkX remained disputable. We designed tailored caged compounds to make this type of enzymatic reaction accessible for time-resolved Fourier transform infrared difference spectroscopy. By combining spectroscopic and biochemical methods, we determined that full length AnkX is autophosphocholinated at Ser521, Thr620, and Thr943. However, autophosphocholination loses specificity for these sites in shortened constructs and does not appear to be relevant for the catalysis of the phosphoryl transfer. In contrast, transient phosphocholination of His229 in the conserved catalytic motif might exist as a short-lived reaction intermediate. Upon substrate binding, His229 is deprotonated and locked in this state, being rendered capable of a nucleophilic attack on the pyrophosphate moiety of the substrate. The proton that originated from His229 is transferred to a nearby carboxylic acid residue. Thus, our combined findings support a ping-pong mechanism involving phosphocholination of His229 and subsequent transfer of phosphocholine to the Rab GTPase. Our approach can be extended to the investigation of further nucleotidyl transfer reactions, which are currently of reemerging interest in regulatory pathways of host–pathogen interactions.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2016. Vol. 55, no 31, 4375-4385 p.
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:umu:diva-127253DOI: 10.1021/acs.biochem.6b00524ISI: 000384959400014PubMedID: 27404583OAI: oai:DiVA.org:umu-127253DiVA: diva2:1045724
Available from: 2016-11-10 Created: 2016-11-03 Last updated: 2016-11-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Hedberg, Christian
By organisation
Department of ChemistryUmeå Centre for Microbial Research (UCMR)
In the same journal
Biochemistry
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 38 hits
ReferencesLink to record
Permanent link

Direct link