Change search
ReferencesLink to record
Permanent link

Direct link
The Woody-Preferential Gene EgMYB88 Regulates the Biosynthesis of Phenylpropanoid-Derived Compounds in Wood
Show others and affiliations
2016 (English)In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 7, 1422Article in journal (Refereed) Published
Abstract [en]

Comparative phylogenetic analyses of the R2R3-MYB transcription factor family revealed that five subgroups were preferentially found in woody species and were totally absent from Brassicaceae and monocots (Soler et al., 2015). Here, we analyzed one of these subgroups (WPS-I) for which no gene had been yet characterized. Most Eucalyptus members of WPS-I are preferentially expressed in the vascular cambium, the secondary meristem responsible for tree radial growth. We focused on EgMYB88, which is the most specifically and highly expressed in vascular tissues, and showed that it behaves as a transcriptional activator in yeast. Then, we functionally characterized EgMYB88 in both transgenic Arabidopsis and poplar plants overexpressing either the native or the dominant repression form (fused to the Ethylene-responsive element binding factor-associated Amphiphilic Repression motif, EAR). The transgenic Arabidopsis lines had no phenotype whereas the poplar lines overexpressing EgMYB88 exhibited a substantial increase in the levels of the flavonoid catechin and of some salicinoid phenolic glycosides (salicortin, salireposide, and tremulacin), in agreement with the increase of the transcript levels of landmark biosynthetic genes. A change in the lignin structure (increase in the syringyl vs. guaiacyl, S/G ratio) was also observed. Poplar lines overexpressing the EgMYB88 dominant repression form did not show a strict opposite phenotype. The level of catechin was reduced, but the levels of the salicinoid phenolic glycosides and the S/G ratio remained unchanged. In addition, they showed a reduction in soluble oligolignols containing sinapyl p-hydroxybenzoate accompanied by a mild reduction of the insoluble lignin content. Altogether, these results suggest that EgMYB88, and more largely members of the WPS-I group, could control in cambium and in the first layers of differentiating xylem the biosynthesis of some phenylpropanoid-derived secondary metabolites including lignin.

Place, publisher, year, edition, pages
Frontiers Media , 2016. Vol. 7, 1422
Keyword [en]
vascular cambium, MYB transcription factors, phenylpropanoid metabolism, lignin, oligolignols, avonoids, salicinoid phenolic glycosides, Eucalyptus
National Category
Botany Genetics
URN: urn:nbn:se:umu:diva-127243DOI: 10.3389/fpls.2016.01422ISI: 000383654100001PubMedID: 27713753OAI: diva2:1046606
Available from: 2016-11-14 Created: 2016-11-03 Last updated: 2016-11-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Pesquet, Edouard
By organisation
Department of Plant Physiology
In the same journal
Frontiers in Plant Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 2 hits
ReferencesLink to record
Permanent link

Direct link