umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards integration of population and comparative genomics in forest trees
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432,As, Norway.ORCID iD: 0000-0001-6097-2539
Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).ORCID iD: 0000-0001-6031-005X
2016 (English)In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 212, no 2, p. 338-344Article, review/survey (Refereed) Published
Abstract [en]

The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome assembly, comparative regulomics and population genetics as they relate to studies of forest tree species.

Place, publisher, year, edition, pages
2016. Vol. 212, no 2, p. 338-344
Keywords [en]
comparative genomics, comparative regulomics, expression network, expressolog, genome assembly, population genetics
National Category
Botany Genetics
Identifiers
URN: urn:nbn:se:umu:diva-127619DOI: 10.1111/nph.14153ISI: 000383595700009PubMedID: 27575589OAI: oai:DiVA.org:umu-127619DiVA, id: diva2:1050805
Available from: 2016-11-30 Created: 2016-11-16 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Ingvarsson, Pär K.Hvidsten, Torgeir R.Street, Nathaniel R.

Search in DiVA

By author/editor
Ingvarsson, Pär K.Hvidsten, Torgeir R.Street, Nathaniel R.
By organisation
Department of Ecology and Environmental SciencesUmeå Plant Science Centre (UPSC)Department of Plant Physiology
In the same journal
New Phytologist
BotanyGenetics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf