umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar
Norwegian Geotechnical Institute, Oslo, Norway. (EcoChange)
Show others and affiliations
2016 (English)In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 144, 879-887 p.Article in journal (Refereed) Published
Abstract [en]

Carbonaceous materials like biochars are increasingly recognized as effective sorbent materials for sequestering organic pollutants. Here, we study sorption behavior of two common hydrophobic organic contaminants 2,2',5,5'-tetrachlorobiphenyl (CB52) and phenanthrene (PHE), on biochars and other carbonaceous materials (CM) produced at a wide range of conditions and temperatures from various feedstocks. The primary aim was to establish structure–reactivity relationships responsible for the observed variation in CM and biochar sorption characteristics. CM were characterized for their elemental composition, surface area, pore size distribution, aromaticity and thermal stability. Freundlich sorption coefficients for CB52 and PHE (i.e. LogKF,CB52 and KF,PHE, respectively) to CM showed a variation of two to three orders of magnitude, with LogKF,CB52 ranging from 5.12 ± 0.38 to 8.01 ± 0.18 and LogKF,PHE from 5.18 ± 0.09 to 7.42 ± 1.09. The highest LogKF values were observed for the activated CM, however, non-activated biochars produced at high temperatures (>700 °C) sorbed almost as strongly (within 0.2–0.5 Log units) as the activated ones. Sorption coefficients significantly increased with pyrolysis temperature, CM surface area and pore volume, aromaticity, and thermal stability, and decreased with H/C, O/C, (O + N)/C content. The results of our study contribute to the understanding of processes underlying HOC sorption to CM and explore the potential of CM as engineered sorbents for environmental applications.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 144, 879-887 p.
Keyword [en]
Biochar, Sorption, Hydrophobic organic compounds, Remediation
National Category
Chemical Sciences Environmental Sciences
Identifiers
URN: urn:nbn:se:umu:diva-128828DOI: 10.1016/j.chemosphere.2015.09.055ISI: 000367774400111PubMedID: 26421628OAI: oai:DiVA.org:umu-128828DiVA: diva2:1056774
Available from: 2016-12-15 Created: 2016-12-15 Last updated: 2017-08-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Kupryianchyk, Darya
In the same journal
Chemosphere
Chemical SciencesEnvironmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf