umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A synthesis of parameters related to the binding of neutral organic compounds to charcoal
Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI). (EcoChange)
2016 (English)In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 144, 65-74 p.Article in journal (Refereed) Published
Abstract [en]

Abstract The sorption strength of neutral organic compounds to charcoal, also called biochar was reviewed and related to charcoal and compound properties. From 29 studies, 507 individual Freundlich sorption coefficients were compiled that covered the sorption strength of 107 organic contaminants. These sorption coefficients were converted into charcoal-water distribution coefficients (KD) at aqueous concentrations of 1 ng/L, 1 µg/L and 1 mg/L. Reported log KD values at 1 µg/L varied from 0.38 to 8.25 across all data. Variation was also observed within the compound classes; pesticides, herbicides and insecticides, PAHs, phthalates, halogenated organics, small organics, alcohols and PCBs. Five commonly reported variables; charcoal production temperature T, surface area SA, H/C and O/C ratios and organic compound octanol–water partitioning coefficient, were correlated with KD values using single and multiple-parameter linear regressions. The sorption strength of organic compounds to charcoals increased with increasing charcoal production temperature T, charcoal SA and organic pollutant octanol–water partitioning coefficient and decreased with increasing charcoal O/C ratio and charcoal H/C ratio. T was found to be correlated with SA (r2 = 0.66) and O/C (r2 = 0.50), particularly for charcoals produced from wood feedstocks (r2 = 0.73 and 0.80, respectively). The resulting regression: log KD = (0.18 ± 0.06) log Kow + (5.74 ± 1.40) log T + (0.85 ± 0.15) log SA + (1.60 ± 0.29) log OC + (−0.89 ± 0.20) log HC + (−13.20 ± 3.69), r2 = 0.60, root mean squared error = 0.95, n = 151 was obtained for all variables. This information can be used as an initial screening to identify charcoals for contaminated soil and sediment remediation.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 144, 65-74 p.
Keyword [en]
Charcoal, Biochar, Sorption, Surface area, Temperature, Hydrophobicity, Elemental composition
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-128830DOI: 10.1016/j.chemosphere.2015.08.047ISI: 000367774400010OAI: oai:DiVA.org:umu-128830DiVA: diva2:1056826
Available from: 2016-12-15 Created: 2016-12-15 Last updated: 2017-08-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kupryianchyk, Darya
In the same journal
Chemosphere
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf