umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
COLLOID DIFFUSION IN COMPACTED BENTONITE: MICROSTRUCTURAL CONSTRAINTS
2010 (English)In: Clays and clay minerals, ISSN 0009-8604, E-ISSN 1552-8367, Vol. 58, no 4Article in journal (Refereed) Published
Abstract [en]

In Sweden and in many other countries, a bentonite barrier will be used in the repository for spent nuclear fuel. In the event of canister failure, colloidal diffusion is a potential, but scarcely studied mechanism of radionuclide migration through the bentonite barrier. Column and in situ experiments are vital in understanding colloid diffusion and in providing information about the microstructure of compacted bentonite and identifying cut-off limits for colloid filtration. This study examined diffusion of negatively charged 2-, 5-, and 15-nm gold colloids in 4-month diffusion experiments using MX-80 Wyoming bentonite compacted to dry densities of 0.6–2.0 g/cm3. Breakthrough of gold colloids was not observed in any of the three diffusion experiments. In a gold-concentration profile analysis, colloid diffusion was only observed for the smallest gold colloids at the lowest dry density used (estimated apparent diffusivity Da ≈5×10−13 m2/s). The results from a microstructure investigation using low-angle X-ray diffraction suggest that at the lowest dry density used, interlayer transport of the smallest colloids cannot be ruled out as a potential diffusion pathway, in addition to the expected interparticle transport. In all other cases, with either greater dry densities or larger gold colloids, compacted bentonite will effectively prevent diffusion of negatively charged colloids due to filtration.

Place, publisher, year, edition, pages
The Clay Minerals Society , 2010. Vol. 58, no 4
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-129172DOI: 10.1346/CCMN.2010.0580408OAI: oai:DiVA.org:umu-129172DiVA: diva2:1058467
Available from: 2016-12-21 Created: 2016-12-21 Last updated: 2016-12-21

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Holmboe, Michael
In the same journal
Clays and clay minerals
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf