umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt155",{id:"formSmash:upper:j_idt155",widgetVar:"widget_formSmash_upper_j_idt155",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt156_j_idt158",{id:"formSmash:upper:j_idt156:j_idt158",widgetVar:"widget_formSmash_upper_j_idt156_j_idt158",target:"formSmash:upper:j_idt156:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Codegree thresholds for covering 3-uniform hypergraphsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: SIAM Journal on Discrete Mathematics, ISSN 0895-4801, E-ISSN 1095-7146, Vol. 30, no 4, 1899-1917 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2016. Vol. 30, no 4, 1899-1917 p.
##### Keyword [en]

3-graphs, covering, codegree, extremal
##### National Category

Discrete Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-130142DOI: 10.1137/15M1051452ISI: 000391960000001OAI: oai:DiVA.org:umu-130142DiVA: diva2:1064523
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt470",{id:"formSmash:j_idt470",widgetVar:"widget_formSmash_j_idt470",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt476",{id:"formSmash:j_idt476",widgetVar:"widget_formSmash_j_idt476",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt482",{id:"formSmash:j_idt482",widgetVar:"widget_formSmash_j_idt482",multiple:true});
Available from: 2017-01-12 Created: 2017-01-12 Last updated: 2017-11-29Bibliographically approved

Given two 3-uniform hypergraphs F and G = (V, E), we say that G has an F-covering if we can cover V with copies of F. The minimum codegree of G is the largest integer d such that every pair of vertices from V is contained in at least d triples from E. Define c(2)(n, F) to be the largest minimum codegree among all n-vertex 3-graphs G that contain no F-covering. Determining c(2)(n, F) is a natural problem intermediate (but distinct) from the well-studied Turan problems and tiling problems. In this paper, we determine c(2)(n, K-4) (for n > 98) and the associated extremal configurations (for n > 998), where K-4 denotes the complete 3-graph on 4 vertices. We also obtain bounds on c(2)(n, F) which are apart by at most 2 in the cases where F is K-4(-) (K-4 with one edge removed), K-5(-), and the tight cycle C-5 on 5 vertices.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1191",{id:"formSmash:j_idt1191",widgetVar:"widget_formSmash_j_idt1191",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1247",{id:"formSmash:lower:j_idt1247",widgetVar:"widget_formSmash_lower_j_idt1247",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1248_j_idt1250",{id:"formSmash:lower:j_idt1248:j_idt1250",widgetVar:"widget_formSmash_lower_j_idt1248_j_idt1250",target:"formSmash:lower:j_idt1248:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});