umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ash Formation in Pilot-Scale Pressurized Entrained-Flow Gasification of Bark and a Bark/Peat Mixture
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
Show others and affiliations
2016 (English)In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 30, no 12, 10543-10554 p.Article in journal (Refereed) Published
Abstract [en]

Pressurized entrained-flow gasification (PEFG) of bark and a bark/peat mixture (BPM) was carried out in a pilot scale reactor (600 kW(th), 7 bar(a)) with the objective of studying ash transformations and behaviors. The bark fuel produced a sintered but nonflowing reactor slag, while the BPM fuel produced a flowing reactor slag. Si was enriched within these slags compared to their original fuel ash compositions, especially in the bark campaign, which indicated extensive ash matter fractionation. Thermodynamically, the Si contents largely accounted for the differences in the predicted solidus/liquidus temperatures and melt formations of the reactor slags. Suspension flow viscosity estimations were in qualitative agreement with observations and highlighted potential difficulties in controlling slag flow. Quench solids from the bark campaign were mainly composed of heterogeneous particles resembling reactor fly ash particles, while those from the BPM campaign were flowing slags with likely chemical interactions with the wall refractory. Quench effluents and raw syngas particles were dominated by elevated levels of K that, along with other chemical aspects, indicated KOH(g) and/or K(g) were likely formed during PEFG. Overall, the results provide information toward development of woody biomass PEFG and indicate that detailed understanding of the ash matter fractionation behavior is essential.

Place, publisher, year, edition, pages
2016. Vol. 30, no 12, 10543-10554 p.
National Category
Bioenergy
Identifiers
URN: urn:nbn:se:umu:diva-130239DOI: 10.1021/acs.energyfuels.6b02222ISI: 000390072900057OAI: oai:DiVA.org:umu-130239DiVA: diva2:1065813
Available from: 2017-01-16 Created: 2017-01-14 Last updated: 2017-01-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Carlborg, MarkusBackman, Rainer
By organisation
Department of Applied Physics and Electronics
In the same journal
Energy & Fuels
Bioenergy

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf