umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Stereotactic Probabilistic Atlas for the Major Cerebral Arteries
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper.
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Centrum för medicinsk teknik och fysik (CMTF).
Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Neuroinformatics, ISSN 1539-2791, E-ISSN 1559-0089, Vol. 15, nr 1, s. 101-110Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Improved whole brain angiographic and velocity-sensitive MRI is pushing the boundaries of noninvasively obtained cerebral vascular flow information. The complexity of the information contained in such datasets calls for automated algorithms and pipelines, thus reducing the need of manual analyses by trained radiologists. The objective of this work was to lay the foundation for such automated pipelining by constructing and evaluating a probabilistic atlas describing the shape and location of the major cerebral arteries. Specifically, we investigated how the implementation of a non-linear normalization into Montreal Neurological Institute (MNI) space improved the alignment of individual arterial branches. In a population-based cohort of 167 subjects, age 64-68 years, we performed 4D flow MRI with whole brain volumetric coverage, yielding both angiographic and anatomical data. For each subject, sixteen cerebral arteries were manually labeled to construct the atlas. Angiographic data were normalized to MNI space using both rigid-body and non-linear transformations obtained from anatomical images. The alignment of arterial branches was significantly improved by the non-linear normalization (p < 0.001). Validation of the atlas was based on its applicability in automatic arterial labeling. A leave-one-out validation scheme revealed a labeling accuracy of 96 %. Arterial labeling was also performed in a separate clinical sample (n = 10) with an accuracy of 92.5 %. In conclusion, using non-linear spatial normalization we constructed an artery-specific probabilistic atlas, useful for cerebral arterial labeling.

Ort, förlag, år, upplaga, sidor
2017. Vol. 15, nr 1, s. 101-110
Nyckelord [en]
Cerebral arteries, Probabilistic atlas, 4D flow MRI, Automatic labeling, Spatial normalization
Nationell ämneskategori
Klinisk medicin
Identifikatorer
URN: urn:nbn:se:umu:diva-131144DOI: 10.1007/s12021-016-9320-yISI: 000394260000009PubMedID: 27873151Scopus ID: 2-s2.0-84996542654OAI: oai:DiVA.org:umu-131144DiVA, id: diva2:1071866
Tillgänglig från: 2017-02-06 Skapad: 2017-02-06 Senast uppdaterad: 2018-06-09Bibliografiskt granskad
Ingår i avhandling
1. Blood flow assessment in cerebral arteries with 4D flow magnetic resonance imaging: an automatic atlas-based approach
Öppna denna publikation i ny flik eller fönster >>Blood flow assessment in cerebral arteries with 4D flow magnetic resonance imaging: an automatic atlas-based approach
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Blodflödesmätning i cerebrala artärer med 4D flödes magnetresonanstomografi : en automatisk atlasbaserad metod
Abstract [en]

Background: Disturbed blood flow to the brain has been associated with several neurological diseases, from stroke and vascular diseases to Alzheimer’s and cognitive decline. To determine the cerebral arterial blood flow distribution, measurements are needed in both distal and proximal arteries.

4D flow MRI makes it possible to obtain blood flow velocities from a volume covering the entire brain in one single scan. This facilitates more extensive flow investigations, since flow rate assessment in specific arteries can be done during post-processing. The flow rate assessment is still rather laborious and time consuming, especially if the number of arteries of interest is high. In addition, the quality of the measurements relies heavily on the expertise of the investigator.

The aim of this thesis was to develop and evaluate an automatic post-processing tool for 4D flow MRI that identifies the main cerebral arteries and calculates their blood flow rate with minimal manual input. Atlas-based labeling of brain tissue is common in toolboxes for analysis of neuroimaging-data, and we hypothesized that a similar approach would be suitable for arterial labeling. We also wanted to investigate how to best separate the arterial lumen from background for calculation of blood flow.

Methods: An automatic atlas-based arterial identification method (AAIM) for flow assessment was developed. With atlas-based labeling, voxels are labeled based on their spatial location in MNI-space, a stereotactic coordinate system commonly used for neuroimaging analysis. To evaluate the feasibility of this approach, a probabilistic atlas was created from a set of angiographic images derived from 4D flow MRI. Included arteries were the anterior (ACA), middle (MCA) and posterior (PCA) cerebral arteries, as well as the internal carotid (ICA), vertebral (VA), basilar (BA) and posterior communicating (PCoA) arteries. To identify the arteries in an angiographic image, a vascular skeleton where each branch represented an arterial segment was extracted and labeled according to the atlas. Labeling accuracy of the AAIM was evaluated by visual inspection.

Next, the labeling method was adapted for flow measurements by pre-defining desired regions within the atlas. Automatic flow measurements were then compared to measurements at manually identified locations. During the development process, arterial identification was evaluated on four patient cohorts, with and without vascular disease. Finally, three methods for flow quantification using 4D flow MRI: k-means clustering; global thresholding; and local thresholding, were evaluated against a standard reference method.

Results: The labeling accuracy on group level was between 96% and 87% for all studies, and close to 100% for ICA and BA. Short arteries (PCoA) and arteries with large individual anatomical variation (VA) were the most challenging. Blood flow measurements at automatically identified locations were highly correlated (r=0.99) with manually positioned measurements, and difference in mean flow was negligible.

Both global and local thresholding out-performed k-means clustering, since the threshold value could be optimized to produce a mean difference of zero compared to reference. The local thresholding had the best concordance with the reference method (p=0.009, F-test) and was the only method that did not have a significant correlation between flow difference and flow rate. In summary, with a local threshold of 20%, ICC was 0.97 and the flow rate difference was -0.04 ± 15.1 ml/min, n=308.

Conclusion: This thesis work demonstrated that atlas-based labeling was suitable for identification of cerebral arteries, enabling automated processing and flow assessment in 4D flow MRI. Furthermore, the proposed flow rate quantification algorithm reduced some of the most important shortcomings associated with previous methods. This new platform for automatic 4D flow MRI data analysis fills a gap needed for efficient in vivo investigations of arterial blood flow distribution to the entire vascular tree of the brain, and should have important applications to practical use in neurological diseases.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2018. s. 60
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 1965
Nyckelord
Circle of Willis, 4D flow MRI, Cerebral arteries, Vascular disease, Stroke, Automatic labeling, Probabilistic atlas, Cerebral blood flow, Neuroimaging, Magnetic Resonance Imaging
Nationell ämneskategori
Medicinteknik
Identifikatorer
urn:nbn:se:umu:diva-147256 (URN)978-91-7601-889-7 (ISBN)
Disputation
2018-05-25, Betula, NUS, Umeå, 13:00 (Svenska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, 2015–05616Hjärt-Lungfonden, 20110383Hjärt-Lungfonden, 20140592Hjärnfonden
Tillgänglig från: 2018-05-04 Skapad: 2018-04-30 Senast uppdaterad: 2018-06-09Bibliografiskt granskad

Open Access i DiVA

fulltext(3464 kB)171 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3464 kBChecksumma SHA-512
29bd3a4de57f68b7cc1f324d214653c395afbeb5775d7f53eeca9e2ba3c393ad0c533b15f98766b663b94488b6d4ee39e440c235d046ffb87305a03229ab5f71
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Dunås, ToraWåhlin, AndersAmbarki, KhalidZarrinkoob, LalehMalm, JanEklund, Anders

Sök vidare i DiVA

Av författaren/redaktören
Dunås, ToraWåhlin, AndersAmbarki, KhalidZarrinkoob, LalehMalm, JanEklund, Anders
Av organisationen
Institutionen för strålningsvetenskaperUmeå centrum för funktionell hjärnavbildning (UFBI)Centrum för medicinsk teknik och fysik (CMTF)Klinisk neurovetenskap
I samma tidskrift
Neuroinformatics
Klinisk medicin

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 171 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 600 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf