umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth
Show others and affiliations
2017 (English)In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 13, no 2Article in journal (Refereed) Published
Abstract [en]

Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

Place, publisher, year, edition, pages
2017. Vol. 13, no 2
National Category
Botany Genetics
Identifiers
URN: urn:nbn:se:umu:diva-132003DOI: 10.1371/journal.pgen.1006607ISI: 000395719300024PubMedID: 28158182OAI: oai:DiVA.org:umu-132003DiVA: diva2:1077807
Available from: 2017-03-01 Created: 2017-03-01 Last updated: 2017-03-31Bibliographically approved

Open Access in DiVA

fulltext(3700 kB)10 downloads
File information
File name FULLTEXT01.pdfFile size 3700 kBChecksum SHA-512
b150745855752f49eb82d63a944597fb59cea8845d59d5e3329e9c001d046148296a1a964a266a72a3837312d65c8cfd3e78fc85b5257ff8b3743057f05f3482
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Hanson, Johannes
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
PLoS Genetics
BotanyGenetics

Search outside of DiVA

GoogleGoogle Scholar
Total: 10 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 254 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf