umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Terrestrial respiration across tundra vegetation types
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 30 credits / 45 HE creditsStudent thesis
Abstract [en]

Large amounts of carbon (C) are stored in tundra soils. Global warming may turn tundra ecosystems from C sinks into sources or vice versa, depending on the balance between gross primary production (GPP), ecosystem respiration (ER) and the resulting net ecosystem exchange (NEE). We aimed to quantify the summer season C balance of a 27 km2 tundra landscape in subarctic Sweden. We measured CO2 fluxes in 37 widely distributed plots across five tundra vegetation types and in 7 additional bare soil plots, to assess effects of abiotic and biotic components on C exchange. C fluxes in bare soils were low and differed to all vegetation types. Thus, accounting for differences between bare soils and vegetated parts is crucial for upscaling a C balance using a landcover classification map. In addition, we found that both NEE and ER, varied within and across different tundra vegetation types. The C balance model for the growing season 2016 revealed a net C loss to the atmosphere. Most vegetation types acted as CO2 sources, with highest source strength in dense shrub vegetation at low elevations. The only considerable C sinks were graminoid-dominated upland meadows. In addition, we found a shift in C balance between different heath vegetation types, ranging from C source in dense deciduous shrub vegetation (Mesic Heath and Dry Heath) to C sink in low growing shrub vegetation (Extremely Dry Heath). These results highlight the importance to account for differences between vegetation types when modelling C fluxes from plot to landscape level.

Place, publisher, year, edition, pages
2017.
Keyword [en]
Arctic ecosystems, tundra, carbon, respiration, climate change
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:umu:diva-132765OAI: oai:DiVA.org:umu-132765DiVA: diva2:1083872
Subject / course
Examensarbete i Geovetenskap/naturgeografi avseende masterexamen
Educational program
Master's Programme in Geoecology
Available from: 2017-03-23 Created: 2017-03-22 Last updated: 2017-03-23Bibliographically approved

Open Access in DiVA

fulltext(1703 kB)38 downloads
File information
File name FULLTEXT01.pdfFile size 1703 kBChecksum SHA-512
5b77ce05f6faff56dd2a8ec942e5bb1442c1101a73032c4b50a3ecc91ae5a78d9f7e0b7e534f9d55116c7e8ae3b8c8218b3066223080f5f60a38a274e7a08212
Type fulltextMimetype application/pdf

By organisation
Department of Ecology and Environmental Sciences
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 38 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 123 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf