umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermodynamic Modeling of the Solubility and Chemical Speciation of Mercury and Methylmercury Driven by Organic Thiols and Micromolar Sulfide Concentrations in Boreal Wetland Soils
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2017 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 51, no 7, 3678-3686 p.Article in journal (Refereed) Published
Abstract [en]

Boreal wetlands have been identified as environments in which inorganic divalent mercury (HgII) is transformed to methylmercury (MeHg) by anaerobic microbes. In order to understand this transformation and the mobility and transport of HgII and MeHg, factors and conditions in control of the solubility and chemical speciation of HgII and MeHg need to be clarified. Here we explore the ability of thermodynamic models to simulate measured solubility of HgII and MeHg in different types of boreal wetland soils. With the input of measured concentrations of MeHg, sulfide, eight low molecular mass thiols and thiol groups associated with natural organic matter (NOM), as determined by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and Hg LIII-edge extended X-ray absorption fine structure spectroscopy (EXAFS),the model could accurately predict porewater concentrations of MeHg in the wetlands. A similar model for HgII successfully predicted the average level of its concentration in the porewaters, but the variability among samples, driven mainly by the concentration of aqueous inorganic sulfide, was predicted to be larger than measurements. The smaller than predicted variability in HgII solubility is discussed in light of possible formation of colloidal HgS(s) passing the 0.22 μm filters used to define the aqueous phase. The chemical speciation of the solid/adsorbed and aqueous phases were dominated by NOM associated thiol complexes for MeHg and by an equal contribution from NOM associated thiols and HgS(s) for HgII.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 51, no 7, 3678-3686 p.
National Category
Geochemistry Physical Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-133361DOI: 10.1021/acs.est.6b04622ISI: 000398646500011OAI: oai:DiVA.org:umu-133361DiVA: diva2:1087431
Available from: 2017-04-07 Created: 2017-04-07 Last updated: 2017-06-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Liem-Nguyen, VanBjörn, Erik
By organisation
Department of Chemistry
In the same journal
Environmental Science and Technology
GeochemistryPhysical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 66 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf