umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Endometrial cancer risk prediction including serum-based biomarkers: results from the EPIC cohort
Show others and affiliations
2017 (English)In: International Journal of Cancer, ISSN 0020-7136, E-ISSN 1097-0215, Vol. 140, no 6, 1317-1323 p.Article in journal (Refereed) Published
Abstract [en]

Endometrial cancer risk prediction models including lifestyle, anthropometric and reproductive factors have limited discrimina-tion. Adding biomarker data to these models may improve predictive capacity; to our knowledge, this has not been investigat-ed for endometrial cancer. Using a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, we investigated the improvement in discrimination gained by adding serum biomarker concentrations to risk estimates derived from an existing risk prediction model based on epidemiologic factors. Serum concentrations of sex steroid hormones, metabolic markers, growth factors, adipokines and cytokines were evaluated in a step-wise backward selec-tion process; biomarkers were retained at p < 0.157 indicating improvement in the Akaike information criterion (AIC). Improvement in discrimination was assessed using the C-statistic for all biomarkers alone, and change in C-statistic from addition of biomarkers to preexisting absolute risk estimates. We used internal validation with bootstrapping (1000-fold) to adjust for over-fitting. Adiponectin, estrone, interleukin-1 receptor antagonist, tumor necrosis factor-alpha and triglycerides were select-ed into the model. After accounting for over-fitting, discrimination was improved by 2.0 percentage points when all evaluated biomarkers were included and 1.7 percentage points in the model including the selected biomarkers. Models including eti-ologic markers on independent pathways and genetic markers may further improve discrimination.

Place, publisher, year, edition, pages
2017. Vol. 140, no 6, 1317-1323 p.
Keyword [en]
endometrial cancer, risk prediction, prospective cohort, sex steroids, cytokines, adipokines, flammatory markers, lipids, growth factors, metabolic markers
National Category
Cancer and Oncology
Identifiers
URN: urn:nbn:se:umu:diva-133192DOI: 10.1002/ijc.30560ISI: 000393979000009PubMedID: 27935083OAI: oai:DiVA.org:umu-133192DiVA: diva2:1088687
Available from: 2017-04-13 Created: 2017-04-13 Last updated: 2017-04-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Idahl, AnnikaLundin, Eva
By organisation
Obstetrics and GynecologyNutritional ResearchPathology
In the same journal
International Journal of Cancer
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf