umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multitrait successional forest dynamics enable diverse competitive coexistence
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics. Evolution and Ecology Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria.
2017 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 13, E2719-E2728 p.Article in journal (Refereed) Published
Abstract [en]

To explain diversity in forests, niche theory must show how multiple plant species coexist while competing for the same resources. Although successional processes are widespread in forests, theoretical work has suggested that differentiation in successional strategy allows only a few species stably to coexist, including only a single shade tolerant. However, this conclusion is based on current niche models, which encode a very simplified view of plant communities, suggesting that the potential for niche differentiation has remained unexplored. Here, we show how extending successional niche models to include features common to all vegetation-height-structured competition for light under a prevailing disturbance regime and two trait-mediated tradeoffs in plant function-enhances the diversity of species that can be maintained, including a diversity of shade tolerants. We identify two distinct axes of potential niche differentiation, corresponding to the traits leaf mass per unit leaf area and height at maturation. The first axis allows for coexistence of different shade tolerances and the second axis for coexistence among species with the same shade tolerance. Addition of this second axis leads to communities with a high diversity of shade tolerants. Niche differentiation along the second axis also generates regions of trait space wherein fitness is almost equalized, an outcome we term "evolutionarily emergent near-neutrality." For different environmental conditions, our model predicts diverse vegetation types and trait mixtures, akin to observations. These results indicate that the outcomes of successional niche differentiation are richer than previously thought and potentially account for mixtures of traits and species observed in forests worldwide.

Place, publisher, year, edition, pages
2017. Vol. 114, no 13, E2719-E2728 p.
Keyword [en]
niche, coexistence, trait, plant, adaptive dynamics
National Category
Botany
Identifiers
URN: urn:nbn:se:umu:diva-133742DOI: 10.1073/pnas.1610206114ISI: 000397607300022PubMedID: 28283658OAI: oai:DiVA.org:umu-133742DiVA: diva2:1094179
Available from: 2017-05-09 Created: 2017-05-09 Last updated: 2017-05-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Falster, Daniel S.Brännström, Åke
By organisation
Department of Mathematics and Mathematical Statistics
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Botany

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf