umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In situ probing of the crystallization kinetics of rr-P3HT on single layer graphene as a function of temperature
Umeå University, Faculty of Science and Technology, Department of Chemistry. Nano-Engineered Materials and Organic Electronics Laboratory.
Show others and affiliations
2017 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, no 12, 8496-8503 p.Article in journal (Refereed) Published
Abstract [en]

We studied the molecular packing and crystallization of a highly regio-regular semiconducting polymer poly(3-hexylthiophene) (P3HT) on both single layer graphene and silicon as a function of temperature, during cooling from the melt. The onset of crystallization, crystallites' size, orientation, and kinetics of formation were measured in situ by synchrotron grazing incidence X-ray diffraction (GIXD) during cooling and revealed a very different crystallization process on each surface. A favored crystalline orientation with out of plane pi-pi stacking formed at a temperature of 200 degrees C on graphene, whereas the first crystallites formed with an edge-on orientation at 185 degrees C on silicon. The crystallization of face-on lamellae revealed two surprising effects during cooling: (a) a constant low value of the pi-pi spacing below 60 degrees C; and (b) a reduction by half in the coherence length of face-on lamellae from 100 to 30 degrees C, which corresponded with the weakening of the 2nd or 3rd order of the in-plane (k00) diffraction peak. The final ratio of face-on to edge-on orientations was 40% on graphene, and 2% on silicon, revealing the very different crystallization mechanisms. These results provide a better understanding of how surfaces with different chemistries and intermolecular interactions with the polythiophene polymer chains lead to different crystallization processes and crystallites orientations for specific electronic applications.

Place, publisher, year, edition, pages
2017. Vol. 19, no 12, 8496-8503 p.
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-133743DOI: 10.1039/c6cp08589jISI: 000397860900042PubMedID: 28287217OAI: oai:DiVA.org:umu-133743DiVA: diva2:1094222
Available from: 2017-05-09 Created: 2017-05-09 Last updated: 2017-05-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Boulanger, NicolasBarbero, David R.
By organisation
Department of Chemistry
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 201 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf