umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
Show others and affiliations
2017 (English)In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 6, no 5, UNSP 1601238Article in journal (Refereed) Published
Abstract [en]

The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm(-1) optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies.

Place, publisher, year, edition, pages
2017. Vol. 6, no 5, UNSP 1601238
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:umu:diva-134745DOI: 10.1002/adhm.201601238ISI: 000399716300010OAI: oai:DiVA.org:umu-134745DiVA: diva2:1094890
Available from: 2017-05-11 Created: 2017-05-11 Last updated: 2017-05-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Zhang, WeiChen, JialinBackman, Ludvig J.Danielson, Patrik
By organisation
AnatomyOphthalmology
In the same journal
Advanced Healthcare Materials
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf