umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cerebrospinal fluid hydrodynamics after placement of a shunt with an antisiphon device: a long-term study.
Umeå University, Faculty of Medicine, Department of Radiation Sciences.
Show others and affiliations
2001 (English)In: Journal of Neurosurgery, ISSN 0022-3085, E-ISSN 1933-0693, Vol. 94, no 5, 750-6 p.Article in journal (Refereed) Published
Abstract [en]

OBJECT: Few studies have been performed to investigate the cerebrospinal fluid (CSF) hydrodynamic profile in patients with idiopathic adult hydrocephalus syndrome (IAHS) before and after shunt implantation. The authors compared the in vivo CSF hydrodynamic properties, including the degree of gravity-induced CSF flow, of a shunt with an antisiphon device with a standard shunt.

METHODS: Twelve patients with IAHS underwent insertion of shunts with Delta valves. Clinical testing, magnetic resonance imaging, and CSF hydrodynamic investigations were conducted with intracranial pressure (ICP), gravity effect, and pressure-flow curve of the shunt estimated at baseline and at 3 and 12 months postoperatively. No shunt was revised. Despite postoperative clinical improvement in all patients who received Delta valves, the mean ICP was only moderately reduced (mean decrease at 3 months 0.3 kPa [p = 0.02], at 12 months 0.2 kPa [not significant]). Patients with the greatest increase in ICP preoperatively had the most pronounced decrease postoperatively. The hydrostatic effect of the Delta valves was significantly lower than with the Hakim shunts (0.1-0.2 kPa compared with 0.6 kPa). The increased conductance (that is, lowered resistance) was up to 14 times higher with the Delta valves compared with preoperative levels.

CONCLUSIONS: The function of a CSF shunt may be more complicated than previously thought; the subcutaneous pressure acting on the antisiphon device can modify the shunt characteristics. A compensatory increase in CSF production may counteract the increased outflow through the shunt. The improved CSF outflow conductance may increase the intracranial compliance and thereby dampen a pathological ICP waveform.

Place, publisher, year, edition, pages
2001. Vol. 94, no 5, 750-6 p.
National Category
Neurology
Identifiers
URN: urn:nbn:se:umu:diva-135123DOI: 10.3171/jns.2001.94.5.0750PubMedID: 11354406OAI: oai:DiVA.org:umu-135123DiVA: diva2:1096761
Available from: 2017-05-19 Created: 2017-05-19 Last updated: 2017-05-19

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Eklund, Anders
By organisation
Department of Radiation Sciences
In the same journal
Journal of Neurosurgery
Neurology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf