umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tea and coffee consumption in relation to DNA methylation in four European cohorts.
Show others and affiliations
2017 (English)In: Human Molecular Genetics, ISSN 0964-6906, E-ISSN 1460-2083Article in journal (Refereed) Epub ahead of print
Abstract [en]

Lifestyle factors, such as food choices and exposure to chemicals, can alter DNA methylation and lead to changes in gene activity. Two such exposures with pharmacologically active components are coffee and tea consumption. Both coffee and tea has been suggested to play an important role in modulating disease-risk in humans by suppressing tumour progression, decreasing inflammation and influencing estrogen metabolism. These mechanisms may be mediated by changes in DNA methylation.To investigate if DNA methylation in blood is associated with coffee and tea consumption we performed a genome-wide DNA methylation study for coffee and tea consumption in four European cohorts (N = 3,096). DNA methylation was measured from whole blood at 421,695 CpG sites distributed throughout the genome and analysed in men and women both separately and together in each cohort. Meta-analyses of the results and additional regional-level analyses were performed.After adjusting for multiple testing, the meta-analysis revealed that two individual CpG-sites, mapping to DNAJC16 and TTC17, were differentially methylated in relation to tea consumption in women. No individual sites were associated in men or in the sex-combined analysis for tea or coffee. The regional analysis revealed that 28 regions were differentially methylated in relation to tea consumption in women. These regions contained genes known to interact with estradiol metabolism and cancer. No significant regions were found in the sex-combined and male-only analysis for either tea or coffee consumption.

Place, publisher, year, edition, pages
2017.
Identifiers
URN: urn:nbn:se:umu:diva-135500DOI: 10.1093/hmg/ddx194PubMedID: 28535255OAI: oai:DiVA.org:umu-135500DiVA: diva2:1102658
Available from: 2017-05-30 Created: 2017-05-30 Last updated: 2017-05-30

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Bergdahl, Ingvar ANilsson, Lena M
By organisation
Occupational and Environmental MedicineDepartment of Biobank ResearchNutritional Research
In the same journal
Human Molecular Genetics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf