umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
Show others and affiliations
2017 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 191, 414-424 p.Article in journal (Refereed) Published
Abstract [en]

A combined torrefaction and pelletization study was performed at industrially relevant settings using a factorial design. First, wood chips of Scots pine were torrefied at high temperatures (291-315 degrees C) and short residence times (6-12 min), facilitating high throughput in a continuous pilot-scale torrefaction process. Then the torrefied materials were pelletized, also in pilot-scale, using varying moisture contents (MCs) (10-14%), sieve sizes (4-6 mm), and press channel lengths (PCLs) (25 and 30 mm), in all 19 batches, each of 400 kg. The resulting so called black pellets exhibited bulk densities of 558-725 kg m(-3), durabilities of 46.3-86.5%, and fines contents of 3.8-85.8%. Through multiple linear regression modelling of all 11 responses, it was found that the parameter with the greatest influence on the responses was the torrefaction temperature, followed by torrefaction time, MC, and PCL. Longer PCL and higher MC resulted in higher pellet quality, with less fines and greater bulk density and durability. Furthermore, a low torrefaction degree decreased the amount of power required for pelletization. The energy required to grind pellets into a powder (<0.5 mm) decreased with increasing torrefaction degree as expected, but also with decreasing MC before pelletizing. Pyrolysis-GC/MS analysis of thermal degradation products from the pellets revealed correlations with the torrefaction temperature and time, but no correlations with the pelletization process. These results are useful for mapping chemical changes in torrefied materials and identifying complementary torrefaction and pelletization settings. Specifically of interest is adjustment of PCLs at low intervals to better match friction properties of torrefied materials.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 191, 414-424 p.
Keyword [en]
Pine, Moisture, Press channel lengths, Durability, Fines, Degradation products
National Category
Chemical Process Engineering Bioenergy
Identifiers
URN: urn:nbn:se:umu:diva-134212DOI: 10.1016/j.apenergy.2017.01.035ISI: 000395963500033OAI: oai:DiVA.org:umu-134212DiVA: diva2:1110914
Available from: 2017-06-16 Created: 2017-06-16 Last updated: 2017-11-16Bibliographically approved
In thesis
1. Off-gassing from thermally treated lignocellulosic biomass
Open this publication in new window or tab >>Off-gassing from thermally treated lignocellulosic biomass
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Off-gassing of hazardous compounds is, together with self-heating and dust explosions, the main safety hazards within large-scale biomass storage and handling. Formation of CO, CO2, and VOCs with concurrent O2 depletion can occur to hazardous levels in enclosed stored forest products. Several incidents of CO poisoning and suffocation of oxygen depletion have resulted in fatalities and injuries during cargo vessel discharge of forest products and in conjunction with wood pellet storage rooms and silos. Technologies for torrefaction and steam explosion for thermal treatment of biomass are under development and approaching commercialization, but their off-gassing behavior is essentially unknown.

The overall objective of this thesis was to provide answers to one main question: “What is the off-gassing behaviour of thermally treated lignocellulosic biomass during storage?”. This was achieved by experimental studies and detailed analysis of off-gassing compounds sampled under realistic conditions, with special emphasis on the VOCs.

Presented results show that off-gassing behavior is influenced by numerous factors, in the following ways. CO, CO2 and CH4 off-gassing levels from torrefied and stream-exploded biomass and pellets, and accompanying O2 depletion, are comparable to or lower than corresponding from untreated biomass. The treatments also cause major compositional shifts in VOCs; emissions of terpenes and native aldehydes decline, but levels of volatile cell wall degradation products (notably furans and aromatics) increase. The severity of the thermal treatment is also important; increases in torrefaction severity increase CO off-gassing from torrefied pine to levels comparable to emissions from conventional pellets, and increase O2 depletion for both torrefied chips and pellets. Both treatment temperature and duration also influence degradation rates and VOC composition. The product cooling technique is influential too; water spraying in addition to heat exchange increased CO2 and VOCs off-gassing from torrefied pine chips, as well as O2 depletion. Moreover, the composition of emitted gases co-varied with pellets’ moisture content; pellets of more severely treated material retained less moisture, regardless of their pre-conditioning moisture content. However, no co-variance was found between off-gassing and pelletization settings, the resulting pellet quality, or storage time of torrefied chips before pelletization. Pelletization of steam-exploded bark increased subsequent VOC off-gassing, and induced compositional shifts relative to emissions from unpelletized steam-exploded material. In addition, CO, CO2 and CH4 off-gassing, and O2 depletion, were positively correlated with the storage temperature of torrefied softwood. Similarly, CO and CH4 emissions from steam-exploded softwood increased with increases in storage temperature, and VOC off-gassing from both torrefied and steam-exploded softwood was more affected by storage temperature than by treatment severity. Levels of CO, CO2 and CH4 increased, while levels of O2 and most VOCs decreased, during storage of both torrefied and steam-exploded softwood.CO, CO2 and O2 levels were more affected by storage time than by treatment severity. Levels of VOCs were not significantly decreased or altered by nitrogen purging of storage spaces of steam-exploded or torrefied softwood, or controlled headspace gas exchange (intermittent ventilation) during storage of steam-exploded bark.

In conclusion, rates of off-gassing of CO and CO2 from thermally treated biomass, and associated O2 depletion, are comparable to or lower than corresponding rates for untreated biomass. Thermal treatment induces shifts in both concentrations and profiles of VOCs. It is believed that the knowledge and insights gained provide refined foundations for future research and safe implementation of thermally treated fuels as energy carriers in renewable energy process chains.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2017. 94 p.
Keyword
Torrefaction, steam explosion, enclosed storage, CO, CO2, O2 depletion, VOCs, Tenax-TA, SPME, process settings, storage temperature, storage time
National Category
Chemical Engineering
Identifiers
urn:nbn:se:umu:diva-141921 (URN)978-91-7601-809-5 (ISBN)
Public defence
2017-12-08, KB.E3.01, KBC-huset, Umeå, 09:00 (English)
Opponent
Supervisors
Funder
Bio4Energy
Available from: 2017-11-17 Created: 2017-11-16 Last updated: 2017-11-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Borén, EleonoraPommer, LindaNordin, Anders
By organisation
Department of Applied Physics and Electronics
In the same journal
Applied Energy
Chemical Process EngineeringBioenergy

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf