umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enhanced protein misfolding in patient-derived models of amyotrophic lateral sclerosis
Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
Show others and affiliations
(English)Manuscript (preprint) (Other (popular science, discussion, etc.))
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:umu:diva-138943OAI: oai:DiVA.org:umu-138943DiVA: diva2:1138243
Available from: 2017-09-04 Created: 2017-09-04 Last updated: 2017-09-06
In thesis
1. Using patient-derived cell models to investigate the role of misfolded SOD1 in ALS
Open this publication in new window or tab >>Using patient-derived cell models to investigate the role of misfolded SOD1 in ALS
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Patient-deriverade stamceller som modellsystem för att studera felveckat SOD1 i ALS
Abstract [en]

Protein misfolding and aggregation underlie several neurodegenerative proteinopathies including amyotrophic lateral sclerosis (ALS). Superoxide dismutase 1 (SOD1) was the first gene found to be associated with familial ALS. Overexpression of human mutant or wild type SOD1 in transgenic mouse models induces motor neuron (MN) degeneration and an ALS-like phenotype. SOD1 mutations, leading to the destabilization of the SOD1 protein is associated with ALS pathogenesis. However, how misfolded SOD1 toxicity specifically affects human MNs is not clear. The aim of this thesis was to develop patient-derived, cellular models of ALS to help understand the pathogenic mechanisms underlying SOD1.

To understand which cellular pathways impact on the level of misfolded SOD1 in human cells, we established a model using patient-derived fibroblasts and quantified misfolded SOD1 in relation to disturbances in several ALS-related cellular pathways. Misfolded SOD1 levels did not change following reduction in autophagy, inhibition of the mitochondrial respiratory chain, or induction of endoplasmic reticulum (ER)-stress. However, inhibition of the ubiquitin-proteasome system (UPS) lead to a dramatic increase in misfolded SOD1 levels. Hence, an age-related decline in proteasome activity might underlie the late-life onset that is typically seen in SOD1 ALS.

To address whether or not SOD1 misfolding is enhanced in human MNs, we used mixed MN/astrocyte cultures (MNCs) generated in vitro from patient-specific induced pluripotent stem cells (iPSCs). Levels of soluble misfolded SOD1 were increased in MNCs as well as in pure iPSC-derived astrocytes compared to other cell types, including sensory neuron cultures. Interestingly, this was the case for both mutant and wild type human SOD1, although the increase was enhanced in SOD1 FALS MNCs. Misfolded SOD1 was also found to exist in the same form as in mouse SOD1 overexpression models and was identified as a substrate for 20S proteasome degradation. Hence, the vulnerability of motor areas to ALS could be explained by increased SOD1 misfolding, specifically in MNs and astrocytes.

To investigate factors that might promote SOD1 misfolding, we focussed on the stability of SOD1 mediated by a crucial, stabilizing C57-C146 disulphide bond and its redox status. Formation of disulphide bond is dependent on oxidation by O2 and catalysed by CCS. To investigate whether low O2 tension affects the stability of SOD1 in vitro we cultured fibroblasts and iPSC-derived MNCs under different oxygen tensions. Low oxygen tension promoted disulphide-reduction, SOD1 misfolding and aggregation. This response was much greater in MNCs compared to fibroblasts, suggesting that MNs may be especially sensitive to low oxygen tension and areas with low oxygen supply could serve as foci for ALS initiation.

SOD1 truncation mutations often lack C146, and cannot adopt a native fold and are rapidly degraded. We characterized soluble misfolded and aggregated SOD1 in patient-derived cells carrying a novel SOD1 D96Mfs*8 mutation as well as in cells fom an unaffected mutation carrier. The truncated protein has a C-terminal fusion of seven non-native amino acids and was found to be extremely prone to aggregation in vitro. Since not all mutation carriers develop ALS, our results suggested this novel mutation is associated with reduced penetrance.

In summary, patient derived cells are useful models to study factors affecting SOD1 misfolded and aggregation. We show for the first time that misfolding of a disordered and disease associated protein is enhanced in disease-related cell types. Showing that misfolded SOD1 exists in human cells in the same form as in transgenic mouse models strengthens the translatability of results obtained in the two species. Our results demonstrate disulphide-reduction and misfolding/aggregation of SOD1 and suggest that 20S proteasome could be an important therapeutic target for early stages of disease. This model provides a great opportunity to study pathogenic mechanisms of both familial and sporadic ALS in patient-derived models of ALS. 

Abstract [sv]

Varje år insjuknar omkring 5300 personer i världen i motorneuronsjukdomen Amyotrofisk lateralskleros (ALS). Sjukdomen kännetecknas av degeneration av motorneuron i hjärnan och ryggmärgen, de nervceller som styr kroppens muskler, vilket leder till musklerförtvining och gradvis förlamning. ALS-patienter avlider oftast till följd av andningssvikt när sjukdomen når andningsmuskulaturen. I de allra flesta fall uppkommer ALS sporadiskt (SALS), det vill säga utan känd genetisk orsak, medan ärftliga fall (FALS) drabbar omkring 10 % och beror på mutationer i ett antal kända gener. Upp till 6 % av alla ALS fall kan härledas till mutationer i genen superoxid dismutas 1 (SOD1).

SOD1 är ett enzym som ansvarar för att omvandla och oskadliggöra fria syreradikaler som bildas vid normal ämnesomsättning. 206 olika SOD1 mutationer har identifierats, alla orsakar inte ALS men många leder till att den tredimensionella proteinstrukturen förändras, vilket ökar proteinets benägenhet att felveckas. Initialt trodde man att SOD1 mutationer förhindrade proteinets normalfunktion och följaktligen orsakade ALS. Studier har emellertid visat att den enzymatiska funktionen ofta bevaras, även hos muterade proteiner. Däremot kan små mängder felveckat SOD1 störa andra viktiga cellulära funktioner. Felveckat SOD1 har en benägenhet att klumpa ihop sig och bilda aggregat i det centrala nervsystemet (CNS). Dessa aggregat återfinns hos patienter med såväl FALS som SALS vilket tyder på att även vildtyps-SOD1 kan felveckas och vara involverat i sjukdomsutvecklingen. De flesta studier är baserade på transgena musmodeller som uttrycker extremt stora mängder av muterat humant SOD1. Det är dock oklart hur väl studier i möss överensstämmer med sjukdomsutvecklingen hos ALS-patienter, där mängden SOD1 är betydligt lägre. En central fråga som fortfarande står obesvarad är varför just motorneuron degenererar i ALS, trots att SOD1 uttrycks i alla kroppens celler.

Det övergripande syftet med den här avhandlingen har varit att karakterisera felveckat SOD1 i patientceller för att studera dess roll i ALSrelaterade sjukdomsmekanismer med fysiologiskt relevanta nivåer av SOD1. Samtliga studier är gjorda in vitro med celler från friska donatorer med vildtyps-SOD1, celler från patienter med SOD1-FALS, FALS som bär andra ALS-associerade gener, samt SALS. I de allra flesta fallen har vi analyserat både lösligt felveckat SOD1 samt aggregerade former av SOD1 proteinet.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2017. 95 p.
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 1913
Keyword
ALS, SOD1, patient-derived models, induced pluripotent stem cells, motor neurons, astrocytes, 20S proteasome low oxygen tension, misfolded SOD1
National Category
Natural Sciences
Research subject
Neurology
Identifiers
urn:nbn:se:umu:diva-138948 (URN)978-91-7601-759-3 (ISBN)
Public defence
2017-09-28, Major Groove, building 6L, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2017-09-07 Created: 2017-09-04 Last updated: 2017-09-06Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Forsgren, ElinLehmann, ManuelaKeskin, IsilZetterström, PerAndersen, PeterMarklund, StefanGilthorpe, Jonathan
By organisation
Department of Pharmacology and Clinical NeuroscienceClinical chemistry
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf