umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting two-year survival versus non-survival after first myocardial infarction using machine learning and Swedish national register data
Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi.ORCID-id: 0000-0001-5366-1169
2017 (Engelska)Ingår i: BMC Medical Informatics and Decision Making, ISSN 1472-6947, E-ISSN 1472-6947, Vol. 17, artikel-id 99Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Machine learning algorithms hold potential for improved prediction of all-cause mortality in cardiovascular patients, yet have not previously been developed with high-quality population data. This study compared four popular machine learning algorithms trained on unselected, nation-wide population data from Sweden to solve the binary classification problem of predicting survival versus non-survival 2 years after first myocardial infarction (MI).

Methods: This prospective national registry study for prognostic accuracy validation of predictive models used data from 51,943 complete first MI cases as registered during 6 years (2006-2011) in the national quality register SWEDEHEART/RIKS-HIA (90% coverage of all MIs in Sweden) with follow-up in the Cause of Death register (> 99% coverage). Primary outcome was AUROC (C-statistic) performance of each model on the untouched test set (40% of cases) after model development on the training set (60% of cases) with the full (39) predictor set. Model AUROCs were bootstrapped and compared, correcting the P-values for multiple comparisons with the Bonferroni method. Secondary outcomes were derived when varying sample size (1-100% of total) and predictor sets (39, 10, and 5) for each model. Analyses were repeated on 79,869 completed cases after multivariable imputation of predictors.

Results: A Support Vector Machine with a radial basis kernel developed on 39 predictors had the highest complete cases performance on the test set (AUROC = 0.845, PPV = 0.280, NPV = 0.966) outperforming Boosted C5.0 (0.845 vs. 0. 841, P = 0.028) but not significantly higher than Logistic Regression or Random Forest. Models converged to the point of algorithm indifference with increased sample size and predictors. Using the top five predictors also produced good classifiers. Imputed analyses had slightly higher performance.

Conclusions: Improved mortality prediction at hospital discharge after first MI is important for identifying high-risk individuals eligible for intensified treatment and care. All models performed accurately and similarly and because of the superior national coverage, the best model can potentially be used to better differentiate new patients, allowing for improved targeting of limited resources. Future research should focus on further model development and investigate possibilities for implementation.

Ort, förlag, år, upplaga, sidor
BioMed Central, 2017. Vol. 17, artikel-id 99
Nyckelord [en]
Cardiovascular disease, Classification, Coronary Artery Syndrome, Prognostic Modelling, Myocardial infarction, Registries, Supervised machine learning
Nationell ämneskategori
Bioinformatik (beräkningsbiologi) Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-138543DOI: 10.1186/s12911-017-0500-yISI: 000404803900003PubMedID: 28679442OAI: oai:DiVA.org:umu-138543DiVA, id: diva2:1142272
Tillgänglig från: 2017-09-19 Skapad: 2017-09-19 Senast uppdaterad: 2018-06-09Bibliografiskt granskad

Open Access i DiVA

fulltext(1808 kB)72 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1808 kBChecksumma SHA-512
7503b6491ee3bdd9b71e5a91067e828a3de8d0115ff970744f70cc3816e6105fa68ebe21e72bf89afe91194843057a4416f0900b958ae50cca72fad3b7976a6e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Madison, Guy

Sök vidare i DiVA

Av författaren/redaktören
Madison, Guy
Av organisationen
Institutionen för psykologi
I samma tidskrift
BMC Medical Informatics and Decision Making
Bioinformatik (beräkningsbiologi)Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 72 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 284 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf