umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree
Umeå University, Faculty of Science and Technology, Department of Computing Science.
Universidad Carlos III de Madrid.
2017 (English)In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 535, 213-230 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 535, 213-230 p.
Keyword [en]
Complete eigenstructure, Genericity, Matrix polynomials, Normal rank, Orbits
National Category
Natural Sciences Computer and Information Science Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-139923DOI: 10.1016/j.laa.2017.09.007OAI: oai:DiVA.org:umu-139923DiVA: diva2:1144635
Funder
Swedish Research Council, E0485301Swedish Research Council, eSSENCEStiftelsen Längmanska kulturfonden, BA17-1175
Available from: 2017-09-26 Created: 2017-09-26 Last updated: 2017-09-26

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0024379517305293#bl0010

Search in DiVA

By author/editor
Dmytryshyn, Andrii
By organisation
Department of Computing Science
In the same journal
Linear Algebra and its Applications
Natural SciencesComputer and Information ScienceMathematics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf