Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea
(UMFpub)
Show others and affiliations
2009 (English)In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 11, no 8, p. 2042-2054Article in journal (Refereed) Published
Abstract [en]

P>Actinobacteria are highly abundant in pelagic freshwater habitats and also occur in estuarine environments such as the Baltic Sea. Because of gradients in salinity and other environmental variables estuaries offer natural systems for examining factors that determine Actinobacteria distribution. We studied abundance and community structure of Bacteria and Actinobacteria along two transects in the northern Baltic Sea. Quantitative (CARD-FISH) and qualitative (DGGE and clone libraries) analyses of community composition were compared with environmental parameters. Actinobacteria accounted for 22-27% of all bacteria and the abundance changed with temperature. Analysis of 549 actinobacterial 16S rRNA sequences from four clone libraries revealed a dominance of the freshwater clusters acI and acIV, and two new subclusters (acI-B scB-5 and acIV-E) were assigned. Whereas acI was present at all stations, occurrence of acII and acIV differed between stations and was related to dissolved organic carbon (DOC) and chlorophyll a (Chl a) respectively. The prevalence of the acI-A and acI-B subclusters changed in relation to total phosphorus (Tot-P) and Chl a respectively. Community structure of Bacteria and Actinobacteria differed between the river station and all other stations, responding to differences in DOC, Chl a and bacterial production. In contrast, the composition of active Actinobacteria (analysis based on reversely transcribed RNA) changed in relation to salinity and Tot-P. Our study suggests an important ecological role of Actinobacteria in the brackish northern Baltic Sea. It highlights the need to address dynamics at the cluster or subcluster phylogenetic levels to gain insights into the factors regulating distribution and composition of Actinobacteria in aquatic environments.

Place, publisher, year, edition, pages
WILEY-BLACKWELL PUBLISHING, INC , 2009. Vol. 11, no 8, p. 2042-2054
Identifiers
URN: urn:nbn:se:umu:diva-140778DOI: 10.1111/j.1462-2920.2009.01925.xISI: 000268655000011PubMedID: 19453610OAI: oai:DiVA.org:umu-140778DiVA, id: diva2:1150502
Available from: 2017-10-19 Created: 2017-10-19 Last updated: 2018-06-09

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Riemann, Lasse

Search in DiVA

By author/editor
Riemann, Lasse
In the same journal
Environmental Microbiology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 183 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf