umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Virus Production and Lysate Recycling in Different Sub-basins of the Northern Baltic Sea
(UMFpub)
2010 (English)In: Microbial Ecology, ISSN 0095-3628, E-ISSN 1432-184X, Vol. 60, no 3, p. 572-580Article in journal (Refereed) Published
Abstract [en]

In the Gulf of Bothnia, northern Baltic Sea, a large freshwater inflow creates north-southerly gradients in physico-chemical and biological factors across the two sub-basins, the Bothnian Bay (BB) and the Bothnian Sea. In particular, the sub-basins differ in nutrient limitation (nitrogen vs. phosphorus; P). Since viruses are rich in P, and virus production is commonly connected with bacterial abundance and growth, we hypothesized that the role of viral lysis differs between the sub-basins. Thus, we examined virus production and the potential importance of lysate recycling in surface waters along a transect in the Gulf of Bothnia. Surprisingly, virus production and total P were negatively correlated. In the BB, virus production rates were double those elsewhere in the system, although bacterial abundance and production were the lowest. In the BB, virus-mediated cell lysates could account for 70-180% and 100-250% of the bacterial carbon and P demand, respectively, while only 4-15% and 8-21% at the other stations. Low concentrations of dissolved DNA (D-DNA) with a high proportion of encapsulated DNA (viruses) in the BB suggested rapid turnover and high uptake of free DNA. The correlation of D-DNA and total P indicates that D-DNA is a particularly important nutrient source in the P-limited BB. Our study demonstrates large and counterintuitive differences in virus-mediated recycling of carbon and nutrients in two basins of the Gulf of Bothnia, which differ in microbial community composition and nutrient limitation.

Place, publisher, year, edition, pages
SPRINGER , 2010. Vol. 60, no 3, p. 572-580
Identifiers
URN: urn:nbn:se:umu:diva-140775DOI: 10.1007/s00248-010-9668-8ISI: 000282971400010PubMedID: 20407893OAI: oai:DiVA.org:umu-140775DiVA, id: diva2:1150511
Available from: 2017-10-19 Created: 2017-10-19 Last updated: 2018-06-09

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Riemann, Lasse

Search in DiVA

By author/editor
Riemann, Lasse
In the same journal
Microbial Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf