umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Data-driven Confounder Selection via Markov and Bayesian Networks
Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics. (Umeå SIMSAM Lab, Stat4Reg)
2018 (English)In: Biometrics, ISSN 0006-341X, E-ISSN 1541-0420, Vol. 74, no 2, p. 389-398Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Wiley-Blackwell, 2018. Vol. 74, no 2, p. 389-398
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:umu:diva-141453DOI: 10.1111/biom.12788ISI: 000436403600001OAI: oai:DiVA.org:umu-141453DiVA, id: diva2:1154820
Funder
Swedish Research Council, 2013–672Available from: 2017-11-06 Created: 2017-11-06 Last updated: 2018-10-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Häggström, Jenny

Search in DiVA

By author/editor
Häggström, Jenny
By organisation
Statistics
In the same journal
Biometrics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 124 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf