umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The role of plant-soil feedbacks in stabilizing a reindeer-induced vegetation shift in subarctic tundra
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. (Arcum)ORCID iD: 0000-0002-2644-2144
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.ORCID iD: 0000-0002-6943-1218
2018 (English)In: Functional Ecology, ISSN 0269-8463, E-ISSN 1365-2435, Vol. 32, no 8, p. 1959-1971Article in journal (Refereed) Published
Abstract [en]

1. Herbivory can drive vegetation into different states of productivity and community composition, and these changes may be stable over time due to historical contingency effects. Interactions with abiotic and biotic soil components can contribute to such long-term legacies in plant communities through stabilizing positive feedbacks.

2. We studied the role of plant-soil feedbacks in maintaining vegetation changes caused by historical (similar to 1350-1900 AD) reindeer herding in northern Sweden. These historical milking grounds (HMGs) consist of meadow plant communities formed in naturally nutrient-poor heath or naturally nutrient-rich shrub-dominated vegetation and are still clearly visible in the landscape, a century after active use ceased.

3. We selected two phytometer species: the forb Potentilla crantzii as representative of HMG vegetation, and the dwarf shrub Betula nana, as representative of control vegetation. We grew both species under glasshouse conditions on soils derived from replicated HMG and paired control plots, using live soils and sterilized (-radiation)-inoculated soils, to separate between biotic and abiotic soil effects.

4. A net negative plant-soil feedback for B.nana biomass in its home (i.e., control) soil and a net positive feedback for P.crantzii in its home (i.e., HMG) soil in heath habitat was partly driven by the soil biotic community. However, abiotic differences in mineral nitrogen (N) concentrations between control and HMG soils were a stronger driver of differences in plant growth. Positive feedbacks maintaining a high mineral nutrient availability are thus important, especially in nutrient-poor habitats.

5. The positive plant responses to higher soil mineral N concentrations, combined with positive biotic plant-soil feedbacks, might shift the competitive balance in favour of typical HMG plant species, thereby contributing to stability of HMG plant communities. Our data indicate that herbivore-driven changes in the interactions between plants and both biotic and abiotic components of the soil persist over long temporal scales.

Place, publisher, year, edition, pages
John Wiley & Sons, 2018. Vol. 32, no 8, p. 1959-1971
Keywords [en]
lternative state, herbivory, historical contingency, legacy effects, plant-soil feedback, Rangifer randus, reindeer husbandry, vegetation composition
National Category
Ecology
Identifiers
URN: urn:nbn:se:umu:diva-142129DOI: 10.1111/1365-2435.13113ISI: 000440651400006OAI: oai:DiVA.org:umu-142129DiVA, id: diva2:1159500
Funder
Swedish Research Council Formas, 2012-1039Swedish Research Council Formas, 2012-230Swedish Research Council Formas, 2015-1091
Note

Originally included in thesis in manuscript form.

Available from: 2017-11-22 Created: 2017-11-22 Last updated: 2018-09-14Bibliographically approved
In thesis
1. Long-lasting ecological legacies of reindeer on tundra vegetation
Open this publication in new window or tab >>Long-lasting ecological legacies of reindeer on tundra vegetation
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Reindeer can have strong effects on the plant species composition and functioning of tundra ecosystems, and often promote a transition towards a graminoid-dominated vegetation type. As a result, they influence many ecological processes, such as nutrient dynamics, soil biotic composition and functioning, and carbon storage. Several studies suggest that the effect of reindeer on vegetation may follow predictable patterns and could induce an alternative stable vegetation state. However, little empirical data on the long-term stability of reindeer effects on vegetation exist, as it is inherently challenging to study these ecological processes experimentally on a sufficiently long timescale. The main objective of this thesis was therefore to gain a better understanding of the long-term ecological processes following reindeer-induced vegetation shifts.

In order to gain a more mechanistic insight in what initially drives this transition, I used a field-based grazing simulation experiment in which I separated defoliation, trampling, moss removal and the addition of feces. This allowed me to test the relative contribution of reindeer-related activities to initiating the shift from moss and heath- dominated tundra towards a graminoid-dominated vegetation state. Additionally, I studied the long-term ecological stability following such a vegetation shift. I did this by addressing historical milking grounds (HMGs): sites where high reindeer concentrations associated with historical traditional reindeer herding practices induced a vegetation transition from shrubs towards graminoids several centuries earlier, but which were abandoned a century ago. Studying HMGs allowed me to address: 1. The potential stability of reindeer-induced vegetation shifts; 2. The ecological mechanisms contributing to the long-term stability of these vegetation shifts; and 3. How such long-lasting vegetation changes influence soil carbon- and nutrient cycling.

I found that trampling by reindeer is an important mechanism by which reindeer cause vegetation change. Addressing HMGs further revealed that this vegetation change can be hightly persistent, as the studied HMGs showed only a low encroachment at the surrounding borders in the last 50 years. The vegetation in the core areas of all studied HMGs had remained strikingly stable, and were hardly invaded by surrounding shrubs. Interestingly, soil nutrient concentrations and microbial activities were still different from the surrounding area as well, and even comparable to actively grazed areas. Even after many centuries of changed vegetation composition and soil processes, there was no difference in total carbon sequestration. This suggests that the environmental conditions for microbial decomposition were more important than vegetation composition for the soil carbon stocks, in our study site.

After studying the contemporary habitat use of HMGs by reindeer and other herbivores, investigating the potential plant-soil feedbacks mechanisms and detailed soil analyses, I concluded that several ecological mechanisms contribute to the long-term stability of HMGs: first, the altered soil biotic and abiotic conditions appear to have a stronger advantage for HMG vegetation than for the surrounding tundra vegetation. Furthermore, I found a clear browsing preference of small rodents on single shrubs proliferating in HMGs, causing a strong limitation on shrub expansion. Moreover, the dense established sward of graminoids likely poses a strong direct competition for space and nutrients, hindering seedling establishment. Finally, I conclude that HMGs are highly stable on relevant ecological timescales, and propose how the concepts of historical contingency and ASS can be applied to understand stability of these reindeer-induced vegetation transitions.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2017. p. 33
Keywords
Alternative stable state, Herbivory, Historical contingency, Nutrient cycling, Plant-herbivore interactions, Plant-soil feedbacks, Rangifer tarandus, Reindeer herding, Traditional land use, Tundra vegetation
National Category
Ecology
Identifiers
urn:nbn:se:umu:diva-142131 (URN)978-91-7601-788-3 (ISBN)
Public defence
2017-12-15, Carl Kempe Salen, KBC, Linneaus väg 6, Umeå, 09:30 (English)
Opponent
Supervisors
Available from: 2017-11-24 Created: 2017-11-22 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Egelkraut, DagmarOlofsson, Johan

Search in DiVA

By author/editor
Egelkraut, DagmarOlofsson, Johan
By organisation
Department of Ecology and Environmental Sciences
In the same journal
Functional Ecology
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 261 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf