umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Brain and Mind Institute, Western University, London, Ontario, Canada; Robarts Research Institute, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.
2017 (English)In: Journal of Neurophysiology, ISSN 0022-3077, E-ISSN 1522-1598, Vol. 118, no 4, p. 1984-1997Article in journal (Refereed) Published
Abstract [en]

Moving the arm is complicated by mechanical interactions that arise between limb segments. Such intersegmental dynamics cause torques applied at one joint to produce movement at multiple joints, and in turn, the only way to create single joint movement is by applying torques at multiple joints. We investigated whether the nervous system accounts for intersegmental limb dynamics across the shoulder, elbow, and wrist joints during self-initiated planar reaching and when countering external mechanical perturbations. Our first experiment tested whether the timing and amplitude of shoulder muscle activity account for interaction torques produced during single-joint elbow movements from different elbow initial orientations and over a range of movement speeds. We found that shoulder muscle activity reliably preceded movement onset and elbow agonist activity, and was scaled to compensate for the magnitude of interaction torques arising because of forearm rotation. Our second experiment tested whether elbow muscles compensate for interaction torques introduced by single-joint wrist movements. We found that elbow muscle activity preceded movement onset and wrist agonist muscle activity, and thus the nervous system predicted interaction torques arising because of hand rotation. Our third and fourth experiments tested whether shoulder muscles compensate for interaction torques introduced by different hand orientations during self-initiated elbow movements and to counter mechanical perturbations that caused pure elbow motion. We found that the nervous system predicted the amplitude and direction of interaction torques, appropriately scaling the amplitude of shoulder muscle activity during self-initiated elbow movements and rapid feedback control. Taken together, our results demonstrate that the nervous system robustly accounts for intersegmental dynamics and that the process is similar across the proximal to distal musculature of the arm as well as between feedforward (i.e., self- initiated) and feedback (i.e., reflexive) control. NEW & NOTEWORTHY Intersegmental dynamics complicate the mapping between applied joint torques and the resulting joint motions. We provide evidence that the nervous system robustly predicts these intersegmental limb dynamics across the shoulder, elbow, and wrist joints during reaching and when countering external perturbations.

Place, publisher, year, edition, pages
American Physiological Society , 2017. Vol. 118, no 4, p. 1984-1997
Keyword [en]
upper limb, intersegmental limb dynamics, voluntary movements, long-latency reflex, redundancy
National Category
Neurosciences Physiology
Identifiers
URN: urn:nbn:se:umu:diva-142916DOI: 10.1152/jn.00178.2017ISI: 000412642900007PubMedID: 28701534OAI: oai:DiVA.org:umu-142916DiVA, id: diva2:1165449
Available from: 2017-12-13 Created: 2017-12-13 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Pruszynski, J. Andrew

Search in DiVA

By author/editor
Pruszynski, J. Andrew
By organisation
Department of Integrative Medical Biology (IMB)
In the same journal
Journal of Neurophysiology
NeurosciencesPhysiology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf