umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bacterial secretion of D-arginine controls environmental microbial biodiversity
Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
2018 (English)In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 12, no 2, p. 438-450Article in journal (Refereed) Published
Abstract [en]

Bacteria face tough competition in polymicrobial communities. To persist in a specific niche, many species produce toxic extracellular effectors to interfere with the growth of nearby microbes. These effectors include the recently reported non-canonical D-amino acids (NCDAAs). In Vibrio cholerae, the causative agent of cholera, NCDAAs control cell wall integrity in stationary phase. Here, an analysis of the composition of the extracellular medium of V. cholerae revealed the unprecedented presence of D-Arg. Compared with other D-amino acids, D-Arg displayed higher potency and broader toxicity in terms of the number of bacterial species affected. Tolerance to D-Arg was associated with mutations in the phosphate transport and chaperone systems, whereas D-Met lethality was suppressed by mutations in cell wall determinants. These observations suggest that NCDAAs target different cellular processes. Finally, even though virtually all Vibrio species are tolerant to D-Arg, only a few can produce this D-amino acid. Indeed, we demonstrate that D-Arg may function as part of a cooperative strategy in vibrio communities to protect non-producing members from competing bacteria. Because NCDAA production is widespread in bacteria, we anticipate that D-Arg is a relevant modulator of microbial subpopulations in diverse ecosystems.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP , 2018. Vol. 12, no 2, p. 438-450
National Category
Medical Biotechnology
Identifiers
URN: urn:nbn:se:umu:diva-144335DOI: 10.1038/ismej.2017.176ISI: 000422779100013PubMedID: 29028003OAI: oai:DiVA.org:umu-144335DiVA, id: diva2:1181460
Available from: 2018-02-08 Created: 2018-02-08 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Alvarez, LauraAliashkevich, AlenaCava, Felipe

Search in DiVA

By author/editor
Alvarez, LauraAliashkevich, AlenaCava, Felipe
By organisation
Molecular Infection Medicine Sweden (MIMS)
In the same journal
The ISME Journal
Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 83 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf