umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Curve analyses reveal altered knee, hip, and trunk kinematics during drop-jumps long after anterior cruciate ligament rupture
Umeå University, Faculty of Social Sciences, Umeå School of Business and Economics (USBE), Statistics.
Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Physiotherapy.
Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Physiotherapy.
Show others and affiliations
2018 (English)In: Knee (Oxford), ISSN 0968-0160, E-ISSN 1873-5800, Vol. 25, no 2, p. 226-239Article in journal (Refereed) Published
Abstract [en]

Background: Anterior cruciate ligament (ACL) ruptures may lead to knee dysfunctions later in life. Single-leg tasks are often evaluated, but bilateral movements may also be compromised. Our aim was to use curve analyses to examine double-leg drop–jump kinematics in ACL-reconstructed, ACL-deficient, and healthy-knee cohorts.

Methods: Subjects with unilateral ACL ruptures treated more than two decades ago (17–28 years) conservatively with physiotherapy (ACLPT, n = 26) or in combination with reconstructive surgery (ACLR, n = 28) and healthy-knee controls (n = 25) performed 40-cm drop–jumps. Three-dimensional knee, hip, and trunk kinematics were analyzed during Rebound, Flight, and Landing phases. Curves were time-normalized and compared between groups (injured and non-injured legs of ACLPT and ACLR vs. non-dominant and dominant legs of controls) and within groups (between legs) using functional analysis of variance methods.

Results: Compared to controls, ACL groups exhibited less knee and hip flexion on both legs during Rebound and greater knee external rotation on their injured leg at the start of Rebound and Landing. ACLR also showed less trunk flexion during Rebound. Between-leg differences were observed in ACLR only, with the injured leg more internally rotated at the hip. Overall, kinematic curves were similar between ACLR and ACLPT. However, compared to controls, deviations spanned a greater proportion of the drop–jump movement at the hip in ACLR and at the knee in ACLPT.

Conclusions: Trunk and bilateral leg kinematics during double-leg drop–jumps are still compromised long after ACL-rupture care, independent of treatment. Curve analyses indicate the presence of distinct compensatory mechanisms in ACLPT and ACLR compared to controls.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 25, no 2, p. 226-239
Keywords [en]
ACL, Biomechanics, Functional data analysis, Interval testing procedure, Lower extremity, Rehabilitation
National Category
Physiotherapy
Identifiers
URN: urn:nbn:se:umu:diva-145719DOI: 10.1016/j.knee.2017.12.005ISI: 000430519800004PubMedID: 29525548Scopus ID: 2-s2.0-85042919592OAI: oai:DiVA.org:umu-145719DiVA, id: diva2:1190627
Available from: 2018-03-15 Created: 2018-03-15 Last updated: 2018-09-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Schelin, LinaTengman, EvaStrong, AndrewHäger, Charlotte

Search in DiVA

By author/editor
Schelin, LinaTengman, EvaStrong, AndrewHäger, Charlotte
By organisation
StatisticsPhysiotherapyPhysiotherapy
In the same journal
Knee (Oxford)
Physiotherapy

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 134 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf